EVA787797 commited on
Commit
3f0be89
1 Parent(s): 68f2f37

Upload app (4).py

Browse files
Files changed (1) hide show
  1. app (4).py +98 -0
app (4).py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
+ from diffusers import DiffusionPipeline
6
+ import random
7
+
8
+ # Initialize the base model and specific LoRA
9
+ base_model = "black-forest-labs/FLUX.1-dev"
10
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
11
+
12
+ lora_repo = "XLabs-AI/flux-RealismLora"
13
+ trigger_word = "" # Leave trigger_word blank if not used.
14
+ pipe.load_lora_weights(lora_repo)
15
+
16
+ pipe.to("cuda")
17
+
18
+ MAX_SEED = 2**32-1
19
+
20
+ @spaces.GPU(duration=80)
21
+ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
22
+ # Set random seed for reproducibility
23
+ if randomize_seed:
24
+ seed = random.randint(0, MAX_SEED)
25
+ generator = torch.Generator(device="cuda").manual_seed(seed)
26
+
27
+ # Update progress bar (0% saat mulai)
28
+ progress(0, "Starting image generation...")
29
+
30
+ # Generate image with progress updates
31
+ for i in range(1, steps + 1):
32
+ # Simulate the processing step (in a real scenario, you would integrate this with your image generation process)
33
+ if i % (steps // 10) == 0: # Update every 10% of the steps
34
+ progress(i / steps * 100, f"Processing step {i} of {steps}...")
35
+
36
+ # Generate image using the pipeline
37
+ image = pipe(
38
+ prompt=f"{prompt} {trigger_word}",
39
+ num_inference_steps=steps,
40
+ guidance_scale=cfg_scale,
41
+ width=width,
42
+ height=height,
43
+ generator=generator,
44
+ joint_attention_kwargs={"scale": lora_scale},
45
+ ).images[0]
46
+
47
+ # Final update (100%)
48
+ progress(100, "Completed!")
49
+
50
+ yield image, seed
51
+
52
+ # Example cached image and settings
53
+ example_image_path = "example0.webp" # Replace with the actual path to the example image
54
+ example_prompt = """A Jelita Sukawati speaker is captured mid-speech. She has long, dark brown hair that cascades over her shoulders, framing her radiant, smiling face. Her Latina features are highlighted by warm, sun-kissed skin and bright, expressive eyes. She gestures with her left hand, displaying a delicate ring on her pinky finger, as she speaks passionately.
55
+
56
+ The woman is wearing a colorful, patterned dress with a green lanyard featuring multiple badges and logos hanging around her neck. The lanyard prominently displays the "CagliostroLab" text.
57
+
58
+ Behind her, there is a blurred background with a white banner containing logos and text, indicating a professional or conference setting. The overall scene captures the energy and vibrancy of her presentation."""
59
+ example_cfg_scale = 3.2
60
+ example_steps = 32
61
+ example_width = 1152
62
+ example_height = 896
63
+ example_seed = 3981632454
64
+ example_lora_scale = 0.85
65
+
66
+ def load_example():
67
+ # Load example image from file
68
+ example_image = Image.open(example_image_path)
69
+ return example_prompt, example_cfg_scale, example_steps, False, example_seed, example_width, example_height, example_lora_scale, example_image
70
+
71
+ with gr.Blocks() as app:
72
+ gr.Markdown("# Flux RealismLora Image Generator")
73
+ with gr.Row():
74
+ with gr.Column(scale=3):
75
+ prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
76
+ generate_button = gr.Button("Generate")
77
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
78
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
79
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
80
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
81
+ randomize_seed = gr.Checkbox(False, label="Randomize seed")
82
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
83
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
84
+ with gr.Column(scale=1):
85
+ result = gr.Image(label="Generated Image")
86
+ gr.Markdown("Generate images using RealismLora and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]")
87
+
88
+ # Automatically load example data and image when the interface is launched
89
+ app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result])
90
+
91
+ generate_button.click(
92
+ run_lora,
93
+ inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
94
+ outputs=[result, seed]
95
+ )
96
+
97
+ app.queue()
98
+ app.launch()