Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""Demo.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1Icb8zeoaudyTDOKM1QySNay1cXzltRAp | |
""" | |
import gradio as gr | |
from PIL import Image | |
import re | |
import torch | |
import torch.nn as nn | |
from warnings import simplefilter | |
simplefilter('ignore') | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Seting up the model | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
print('Loading the base model ....') | |
base_model = VisionEncoderDecoderModel.from_pretrained('Edgar404/donut-shivi-recognition') | |
base_processor = DonutProcessor.from_pretrained('Edgar404/donut-shivi-recognition') | |
print('Loading complete') | |
print('Loading the latence optimized model ....') | |
optimized_model = VisionEncoderDecoderModel.from_pretrained('Edgar404/donut-shivi-cheques_KD_320') | |
optimized_processor = DonutProcessor.from_pretrained('Edgar404/donut-shivi-cheques_KD_320') | |
print('Loading complete') | |
print('Loading the performance optimized model ....') | |
performance_model = VisionEncoderDecoderModel.from_pretrained('Edgar404/donut-shivi-cheques_1920') | |
performance_processor = DonutProcessor.from_pretrained('Edgar404/donut-shivi-cheques_1920') | |
print('Loading complete') | |
models = {'baseline': base_model , | |
'performance': performance_model , | |
'latence': optimized_model} | |
processors = {'baseline': base_processor , | |
'performance': performance_processor , | |
'latence': optimized_processor} | |
# setting | |
def process_image(image , mode = 'baseline' ): | |
""" Function that takes an image and perform an OCR using the model DonUT via the task document | |
parsing | |
parameters | |
__________ | |
image : a machine readable image of class PIL or numpy""" | |
model = models[mode] | |
processor = processors[mode] | |
d_type = torch.float32 | |
model.to(device) | |
model.eval() | |
task_prompt = "<s_cord-v2>" | |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
outputs = model.generate( | |
pixel_values.to(device , dtype = d_type), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() | |
output = processor.token2json(sequence) | |
return output | |
def image_classifier(image , mode): | |
return process_image(image , mode) | |
examples_list = [['./test_images/test_0.jpg' ,"baseline"] , | |
['./test_images/test_1.jpg','baseline'], | |
['./test_images/test_2.jpg' ,"baseline"], | |
['./test_images/test_3.jpg','baseline'], | |
['./test_images/test_4.jpg','baseline'], | |
['./test_images/test_5.jpg' ,"baseline"], | |
['./test_images/test_6.jpg' ,"baseline"], | |
['./test_images/test_7.jpg','baseline'], | |
['./test_images/test_8.jpg','baseline'], | |
['./test_images/test_9.jpg','baseline'], | |
] | |
demo = gr.Interface(fn=image_classifier, inputs=["image", | |
gr.Radio(["baseline" , "performance" ,"latence"], label="mode")], | |
outputs="text", | |
examples = examples_list ) | |
demo.launch(share = True , debug = True) |