Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Demo.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Icb8zeoaudyTDOKM1QySNay1cXzltRAp
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install -q -U gradio peft
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
from tqdm.notebook import tqdm
|
14 |
+
from PIL import Image
|
15 |
+
import re
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from warnings import simplefilter
|
20 |
+
|
21 |
+
simplefilter('ignore')
|
22 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
23 |
+
|
24 |
+
# Seting up the model
|
25 |
+
from peft import PeftConfig, PeftModel
|
26 |
+
numeric_lora_config = PeftConfig.from_pretrained("Edgar404/donut-sroie-lora-r8-x3")
|
27 |
+
|
28 |
+
from transformers import VisionEncoderDecoderConfig
|
29 |
+
|
30 |
+
image_size = [720,960]
|
31 |
+
max_length = 512
|
32 |
+
|
33 |
+
config = VisionEncoderDecoderConfig.from_pretrained(numeric_lora_config.base_model_name_or_path)
|
34 |
+
config.encoder.image_size = image_size
|
35 |
+
config.decoder.max_length = max_length
|
36 |
+
|
37 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
38 |
+
model = VisionEncoderDecoderModel.from_pretrained(numeric_lora_config.base_model_name_or_path ,config = config )
|
39 |
+
numeric_processor = DonutProcessor.from_pretrained("Edgar404/donut-sroie-lora-r8-x3")
|
40 |
+
|
41 |
+
model.config.pad_token_id = numeric_processor.tokenizer.pad_token_id
|
42 |
+
model.config.decoder_start_token_id = numeric_processor.tokenizer.convert_tokens_to_ids(['<s_cord-v2>'])[0]
|
43 |
+
model.decoder.resize_token_embeddings(len(numeric_processor.tokenizer))
|
44 |
+
|
45 |
+
model = PeftModel.from_pretrained(model, model_id = "Edgar404/donut-sroie-lora-r8-x3", adapter_name = 'numeric')
|
46 |
+
model.to(device)
|
47 |
+
|
48 |
+
# Handwritten setting
|
49 |
+
|
50 |
+
hand_processor = DonutProcessor.from_pretrained("Edgar404/donut-lora-r8-x2")
|
51 |
+
|
52 |
+
|
53 |
+
def resize_token_handwritten():
|
54 |
+
|
55 |
+
try :
|
56 |
+
model.load_adapter("Edgar404/donut-lora-r8-x2" ,'handwritten')
|
57 |
+
|
58 |
+
except Exception :
|
59 |
+
# resizing the handwritten embedding layer
|
60 |
+
embedding_layer = model.decoder.model.decoder.embed_tokens.modules_to_save.handwritten
|
61 |
+
old_num_tokens, old_embedding_dim = embedding_layer.weight.shape
|
62 |
+
|
63 |
+
new_embeddings = nn.Embedding(
|
64 |
+
len(hand_processor.tokenizer), old_embedding_dim
|
65 |
+
)
|
66 |
+
|
67 |
+
new_embeddings.to(
|
68 |
+
embedding_layer.weight.device,
|
69 |
+
dtype=embedding_layer.weight.dtype,
|
70 |
+
)
|
71 |
+
|
72 |
+
model.decoder.model.decoder.embed_tokens.modules_to_save.handwritten = new_embeddings
|
73 |
+
|
74 |
+
|
75 |
+
# Resizing the handwritten lm_head layer
|
76 |
+
lm_layer = model.decoder.lm_head.modules_to_save.handwritten
|
77 |
+
|
78 |
+
old_num_tokens, old_input_dim = lm_layer.weight.shape
|
79 |
+
|
80 |
+
new_lm_head = nn.Linear(
|
81 |
+
old_input_dim, len(hand_processor.tokenizer),
|
82 |
+
bias = False
|
83 |
+
)
|
84 |
+
|
85 |
+
new_lm_head.to(
|
86 |
+
lm_layer.weight.device,
|
87 |
+
dtype=lm_layer.weight.dtype,
|
88 |
+
)
|
89 |
+
model.decoder.lm_head.modules_to_save.handwritten = new_lm_head
|
90 |
+
|
91 |
+
|
92 |
+
resize_token_handwritten()
|
93 |
+
|
94 |
+
model.load_adapter("Edgar404/donut-lora-r8-x2" ,'handwritten')
|
95 |
+
|
96 |
+
|
97 |
+
def process_image(image , mode = 'numeric' ):
|
98 |
+
""" Function that takes an image and perform an OCR using the model DonUT via the task document
|
99 |
+
parsing
|
100 |
+
|
101 |
+
parameters
|
102 |
+
__________
|
103 |
+
image : a machine readable image of class PIL or numpy"""
|
104 |
+
|
105 |
+
model.set_adapter(mode)
|
106 |
+
processor = numeric_processor if mode == 'numeric' else hand_processor
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
task_prompt = "<s_cord-v2>"
|
111 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
112 |
+
|
113 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
114 |
+
|
115 |
+
outputs = model.generate(
|
116 |
+
pixel_values.to(device),
|
117 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
118 |
+
max_length=model.decoder.config.max_position_embeddings,
|
119 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
120 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
121 |
+
use_cache=True,
|
122 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
123 |
+
return_dict_in_generate=True,
|
124 |
+
)
|
125 |
+
|
126 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
127 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
128 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()
|
129 |
+
output = processor.token2json(sequence)
|
130 |
+
|
131 |
+
return output
|
132 |
+
|
133 |
+
import gradio as gr
|
134 |
+
|
135 |
+
def image_classifier(image , mode):
|
136 |
+
return process_image(image , mode)
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
examples_list = [['./test_images/TRAIN_00001.jpg' ,"handwritten"] ,
|
141 |
+
['./test_images/001.jpg','numeric'],
|
142 |
+
['./test_images/TEST_0019.jpg' ,"handwritten"],
|
143 |
+
['./test_images/005.jpg','numeric'],
|
144 |
+
['./test_images/007.jpg','numeric'],
|
145 |
+
['./test_images/VALIDATION_0011.jpg' ,"handwritten"],
|
146 |
+
['./test_images/VALIDATION_0022.jpg' ,"handwritten"],
|
147 |
+
['./test_images/062.jpg','numeric'],
|
148 |
+
['./test_images/119.jpg','numeric'],
|
149 |
+
['./test_images/150.jpg','numeric']
|
150 |
+
]
|
151 |
+
|
152 |
+
demo = gr.Interface(fn=image_classifier, inputs=["image",
|
153 |
+
gr.Radio(["handwritten", "numeric"], label="mode")],
|
154 |
+
outputs="text",
|
155 |
+
examples = examples_list )
|
156 |
+
|
157 |
+
demo.launch(share = True)
|