Spaces:
Build error
Build error
File size: 24,491 Bytes
36eb7b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import streamlit as st
from streamlit_option_menu import option_menu
import sys
sys.path.append('./student_analysis')
st.markdown("<h1 style='text-align: center;'>OKULARY: Empowering Educators with Innovative Solutions</h1>", unsafe_allow_html=True)
selected = option_menu(
menu_title=None,
options= ["Home","Plagerism Checker","AI Class Monitoring","Teacher Community","AI Course Outcomes and Answer Checking","Student Performance Tracking","Class Attendence"],
default_index=0,
orientation="horizontal",
styles={
"container": {"padding": "0!important"},
"icon": {"color": "orange", "font-size": "12px"},
"nav-link": {"font-size": "10px", "text-align": "left", "margin":"0px", "--hover-color": "#eee"},
"nav-link-selected": {"background-color": "red"},
}
)
if selected == 'Home':
st.markdown('''
Welcome to OKULARY, the ultimate teacher helper website designed to revolutionize the teaching experience. Our platform is built to address the diverse needs of educators by providing a comprehensive suite of resources, teaching methodologies, community support, AI-driven assessments, and performance analytics.
## **Problem Statement:**
Teaching is a demanding profession that requires educators to juggle multiple responsibilities, from lesson planning and assessment to classroom management and student engagement. With the increasing demands of modern education, teachers often find themselves overwhelmed and in need of support. OKULARY aims to bridge this gap by offering a one-stop solution that empowers educators with the tools and resources they need to excel in their profession.
## **Aim:**
Our aim is to develop an all-encompassing educational platform tailored for teachers, providing comprehensive resources, teaching methodologies, community support, AI-driven assessments, and performance analytics.
## **Objective:**
We aim to create a multifaceted solution that addresses the diverse needs of educators by offering resources, teaching strategies, and a supportive community, while also leveraging AI technology for automated assessment, detection of cheating and malpractice, tracking individual student performance, and providing insightful class analytics. Additionally, we seek to introduce a novel AI class monitoring system that evaluates student attentiveness based on posture and facial expressions, enabling efficient attendance management.
## **Unique Approach:**
What sets our platform apart is its integration of various features essential for effective teaching and classroom management, along with innovative AI capabilities. By combining resources, teaching methodologies, and community support, we foster a holistic environment for educators to enhance their teaching practices. Furthermore, our AI-driven assessment tools not only automate grading but also detect cheating and malpractice, ensuring academic integrity. The inclusion of student performance tracking and class analytics provides valuable insights for educators to tailor their teaching approaches and interventions. Additionally, our pioneering AI class monitoring system introduces a new dimension to classroom management by assessing student engagement and attendance through facial recognition and posture analysis.
## **Key Features:**
1. **Resource Repository:** Access to a vast repository of educational resources.
2. **Teaching Methodologies:** Guidance on effective teaching techniques and methodologies.
3. **Teacher Community:** A supportive online community for collaboration and sharing experiences.
4. **AI Course Outcomes and Answer Checking:** Automated assessment of course outcomes and answer checking using AI.
5. **Cheating and Malpractice Detection:** AI-powered tools to detect cheating and malpractice.
6. **Student Performance Tracking:** Monitoring and tracking individual student performance.
7. **Class Performance Analytics:** Data analytics to analyze class performance trends and patterns.
8. **AI Class Monitoring:** Innovative system to monitor student attentiveness and manage attendance using AI technology.
Through our platform, we aim to revolutionize the teaching experience by providing educators with a comprehensive toolkit for effective teaching, assessment, and classroom management, ultimately enhancing student learning outcomes.
## **Checkpoints:**
- [ ] Documentation And Resources
- [ ] give resources (bh)
- [ ] methods to teach (bh)
- [ ] teacher community (bh)
- [ ] AI course outcomes and answer checking (bh)
- [ ] cheating and malpractice detection (bh)
- [ ] keep track of each student performance (bh)
- [ ] data analytics of class performance. (bh)
- [ ] AI class monitoring (attentiveness)
## **Get Started with OKULARY Today!**
Join OKULARY today and take your teaching to the next level. Our platform is designed to empower educators with the tools and resources they need to excel in their profession. Whether you're a seasoned teacher looking for new teaching strategies or a new teacher seeking guidance, OKULARY has something for everyone. Sign up now and start your journey towards becoming a more effective and successful educator.''')
elif selected == 'Plagerism Checker':
import os
import glob
import PyPDF2
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import zipfile
import shutil
import streamlit as st
from zipfile import ZipFile
from PyPDF2 import PdfReader
from difflib import SequenceMatcher
# Color Scheme
PAGE_BG_COLOR = "#8CB9BD"
CONTENT_BG_COLOR = "#ECB159"
TEXT_COLOR = "#ECB159"
def calculate_similarity(text1, text2):
return SequenceMatcher(None, text1, text2).ratio()
def extract_text_from_pdf(file):
pdf_reader = PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
def process_zip(zip_file):
with ZipFile(zip_file, 'r') as zip_ref:
texts = []
for file_name in zip_ref.namelist():
if file_name.endswith('.pdf'):
with zip_ref.open(file_name) as file:
text = extract_text_from_pdf(file)
texts.append(text)
return texts
def read_pdf(file_path):
"""
Read text content from a PDF file.
Args:
file_path (str): Path to the PDF file.
Returns:
str: Text content of the PDF.
"""
text = ""
with open(file_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
for page_num in range(len(reader.pages)):
text += reader.pages[page_num].extract_text()
return text
def text_similarity(text1, text2):
"""
Compute the cosine similarity between two texts.
Args:
text1 (str): The first text.
text2 (str): The second text.
Returns:
float: The cosine similarity between the two texts.
"""
# Create a CountVectorizer instance
vectorizer = CountVectorizer().fit_transform([text1, text2])
# Calculate cosine similarity
similarity = cosine_similarity(vectorizer)
# Since there are only 2 texts, similarity[0, 1] or similarity[1, 0] gives the similarity
return similarity[0, 1]
def compare_pdfs(pdf_file1, pdf_file2):
"""
Compare two PDF files for similarity.
Args:
pdf_file1 (str): Path to the first PDF file.
pdf_file2 (str): Path to the second PDF file.
"""
text1 = read_pdf(pdf_file1)
text2 = read_pdf(pdf_file2)
file1 = pdf_file1.split('/')[-1]
file2 = pdf_file2.split('/')[-1]
similarity_score = text_similarity(text1, text2)
if similarity_score > 0.75:
st.write(f"Similarity between '{file1}' and '{file2}': {similarity_score}")
if similarity_score > 0.9:
st.write(f"Complete plagiarism detected between '{file1}' and '{file2}'!")
else:
st.write(f"Potential plagiarism detected between '{file1}' and '{file2}'!")
def main(folder_or_zip_path):
"""
Main function to compare PDF files either in a folder or within a zip file.
Args:
folder_or_zip_path (str): Path to the folder containing PDF files or to the zip file.
"""
if folder_or_zip_path.endswith('.zip'):
# Unzip the file
output_folder = './zip_outputs'
unzipped_folder = unzip_file(folder_or_zip_path, output_folder)
folder_path = os.path.join(unzipped_folder, 'pdfs')
else:
folder_path = folder_or_zip_path
# Get all PDF files in the folder
pdf_files = glob.glob(os.path.join(folder_path, "*.pdf"))
num_files = len(pdf_files)
st.write(f"Found {num_files} PDF files in the folder.")
if num_files == 0:
st.write("No PDF files found in the specified folder.")
return
# Compare similarity for all pairs of PDF files
for i in range(num_files):
for j in range(i+1, num_files):
compare_pdfs(pdf_files[i], pdf_files[j])
def unzip_file(zip_file, output_folder):
"""
Unzip a zip file to the specified output folder.
Args:
zip_file (str): Path to the zip file.
output_folder (str): Path to the output folder where the contents will be extracted.
Returns:
str: Path to the folder containing the extracted files.
"""
# Create the output folder if it doesn't exist
os.makedirs(output_folder, exist_ok=True)
# Empty the output folder if it already exists
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
# Extract the zip file
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(output_folder)
return output_folder
def main():
st.title("Plagiarism Detector")
# Custom CSS to apply background color and color scheme
st.markdown(f"""
<style>
body {{
background-color: {PAGE_BG_COLOR};
color: {TEXT_COLOR};
}}
.stApp {{
background-color: {PAGE_BG_COLOR};
}}
.stContent {{
background-color: {CONTENT_BG_COLOR};
}}
.stBlockContainer {{
background-color: {CONTENT_BG_COLOR};
padding: 10px;
border-radius: 10px;
}}
.stButton:focus {{
background-color: {CONTENT_BG_COLOR};
}}
.stButton:hover {{
background-color: {CONTENT_BG_COLOR};
}}
</style>
""", unsafe_allow_html=True)
st.markdown("---")
st.header("Upload Documents or Zip File")
col1, col2, col3 = st.columns([2, 1, 2])
with col1:
st.subheader("Upload Individual PDF Documents")
file1 = st.file_uploader("Upload first document", type=['pdf'], key='file1')
file2 = st.file_uploader("Upload second document", type=['pdf'], key='file2')
with col2:
st.markdown("<h2 style='text-align: center; color: #0080ff;'>OR</h2>", unsafe_allow_html=True)
with col3:
st.subheader("Upload Zip File with PDF Documents")
zip_file = st.file_uploader("Upload zip file with documents", type=['zip'])
st.markdown("---")
plagiarism_button = st.button("Calculate Plagiarism", key='calculate_button', help="Click to check for plagiarism")
if plagiarism_button:
if (file1 and file2) or zip_file:
if file1 and file2:
text1 = extract_text_from_pdf(file1)
text2 = extract_text_from_pdf(file2)
similarity_score = calculate_similarity(text1, text2)
st.success("Plagiarism Percentage: {}%".format(round(similarity_score * 100, 2)))
elif zip_file:
texts = process_zip(zip_file)
if texts:
similarity_score = calculate_similarity(texts[0], texts[1])
st.success("Plagiarism Percentage: {}%".format(round(similarity_score * 100, 2)))
else:
st.warning("No .pdf files found in the uploaded zip file or no files uploaded.")
else:
st.warning("Please upload at least two PDF documents or one zip file.")
if __name__ == "__main__":
main()
elif selected == 'AI Class Monitoring':
pass
elif selected == 'Teacher Community':
import streamlit as st
import pandas as pd
from datetime import datetime
csv_file_path = "questions.csv"
def load_questions():
try:
return pd.read_csv(csv_file_path, converters={'Answers': eval})
except FileNotFoundError:
return pd.DataFrame(columns=['Question', 'Upvotes', 'Downvotes', 'Answers'])
def save_data_to_csv(df):
df.to_csv(csv_file_path, index=False)
def upvote_question(index, questions_df):
questions_df.at[index, 'Upvotes'] += 1
save_data_to_csv(questions_df)
def downvote_question(index, questions_df):
questions_df.at[index, 'Downvotes'] += 1
save_data_to_csv(questions_df)
def add_answer(index, answer, questions_df):
questions_df.at[index, 'Answers'].append(answer)
save_data_to_csv(questions_df)
st.success("Answer posted successfully!")
def display_question_with_answers(index, question, upvotes, downvotes, answers, questions_df):
st.markdown(f"<h3 style='color:darkblue;'>{index + 1}. {question}</h3>", unsafe_allow_html=True)
st.markdown(f"π **{upvotes}** π **{downvotes}**")
st.markdown("**Answers:**")
if answers:
for ans in answers:
st.markdown(f"- {ans}")
else:
st.markdown("- No answers yet.")
st.markdown('---')
col1, col2 = st.columns([1, 10])
with col1:
upvote_button = st.button(label="π", key=f'upvote_{index}')
with col2:
downvote_button = st.button(label="π", key=f'downvote_{index}')
if upvote_button:
upvote_question(index, questions_df)
if downvote_button:
downvote_question(index, questions_df)
answer_key = f'answer_{index}_{datetime.now().strftime("%Y%m%d%H%M%S")}'
answer = st.text_area(label="Your Answer:", key=answer_key)
answer_button = st.button(label="Post Answer", key=f'post_answer_{index}')
if answer_button and answer:
add_answer(index, answer, questions_df)
questions_df = load_questions()
st.markdown(f"- {answer}", unsafe_allow_html=True)
def main():
st.title("Teaching Q&A Forum")
st.markdown("***")
questions_df = load_questions()
st.sidebar.header("Post a New Question")
new_question = st.sidebar.text_area(label="Enter your question here:", height=100)
post_question_button = st.sidebar.button(label="Post Question")
if post_question_button and new_question:
new_row = pd.DataFrame({'Question': [new_question], 'Upvotes': [0], 'Downvotes': [0], 'Answers': [[]]})
questions_df = pd.concat([questions_df, new_row], ignore_index=True)
save_data_to_csv(questions_df)
st.sidebar.success("Question posted successfully!")
st.header("Existing Questions")
for i, row in questions_df.iterrows():
display_question_with_answers(i, row['Question'], row['Upvotes'], row['Downvotes'], row['Answers'], questions_df)
existing_question_index = st.sidebar.selectbox("Select a question to answer:", questions_df.index.tolist())
answer_key = f'answer_{existing_question_index}'
answer_to_existing_question = st.sidebar.text_area(label="Your Answer:", key=answer_key)
post_answer_to_existing_question_button = st.sidebar.button(label="Post Answer", key=f'post_answer_to_existing_question_{existing_question_index}')
if post_answer_to_existing_question_button and answer_to_existing_question:
add_answer(existing_question_index, answer_to_existing_question, questions_df)
questions_df = load_questions()
if __name__ == "__main__":
main()
elif selected == 'Student Performance Tracking':
import streamlit as st
import pandas as pd
import os
# Assuming these are the functions you've defined
from main import (
default_dashboard_class,
default_dashboard_student,
plot_dashboard_class,
plot_dashboard_student,
)
from download_report import create_pdf
# List of student names
student_names = ["Brian Freeman", "Eric Wilson", "Charles Carpenter", "Joseph Lara", "Sara Rivera", "Penny White"]
# List of available subjects
subjects = ['maths', 'computer science', 'reading', 'writing', 'physics']
# Dictionary for options in each mode
student_default_options = {
"Plot Scores for the student": "Plot Scores for the student",
"Plot Individual Semester Progress(Line Plot)": "Plot Individual Semester Progress(Line Plot)",
"Plot Individual Semester Progress (Box Plot)": "Plot Individual Semester Progress (Box Plot)",
"Improvements and Decline of Marks": "Improvements and Decline of Marks",
}
class_default_options = {
"Scores with respect to gender": "Scores with respect to gender",
"Impact of course completion on grades": "Impact of course completion on grades",
"Mean Scores": "Mean Scores",
"Median Scores": "Median Scores",
"Highest Scores": "Highest Scores",
"Lowest Scores": "Lowest Scores",
}
# Streamlit app
def main():
st.title("Student Dashboards")
dashboard_type = st.radio("Choose Dashboard Type", ("Student", "Class"))
if dashboard_type == "Student":
st.subheader("Student Dashboard")
selected_student = st.selectbox("Select Student", student_names)
dashboard_mode = st.radio("Dashboard Mode", ("Default", "Custom"))
st.subheader("Download Student Report")
image_folder = './student_analysis/requested_plots'
pdf_bytes = None
output_file = None
if st.button("Generate Report"):
if selected_student and image_folder:
output_file = create_pdf(selected_student, image_folder)
with open(output_file, "rb") as f:
pdf_bytes = f.read()
if pdf_bytes is not None and output_file is not None:
st.download_button(label="Download Report", data=pdf_bytes, file_name=output_file, mime="application/pdf")
st.success("Report generated successfully!")
if dashboard_mode == "Default":
default_dashboard_student(selected_student)
else:
selected_plots = st.multiselect("Select Plots", list(student_default_options.keys()))
plot_dashboard_student(selected_plots, selected_student, subjects)
else: # Class dashboard
st.subheader("Class Dashboard")
class_mode = st.radio("Dashboard Mode", ("Default", "Custom"))
subject = st.selectbox("Select Subject", subjects)
if class_mode == "Default":
default_dashboard_class(subject)
else:
selected_plots = st.multiselect("Select Plots", list(class_default_options.keys()))
plot_dashboard_class(selected_plots, subject)
st.header("Requested Plots")
image_folder = "./student_analysis/requested_plots"
if os.path.exists(image_folder):
image_files = os.listdir(image_folder)
for image_file in image_files:
if image_file.endswith(('.png', '.jpg', '.jpeg')):
image_path = os.path.join(image_folder, image_file)
st.image(image_path, caption=image_file, use_column_width=True)
else:
st.write("Image folder not found.")
if __name__ == "__main__":
main()
elif selected == 'AI Course Outcomes and Answer Checking':
import streamlit as st
from openai import OpenAI
import json
import os
# Set up OpenAI client
client = OpenAI(api_key="YOUR API KEY")
# Function to read file contents
def read_file_contents(filename):
with open(filename, 'r') as f:
contents = f.read()
return contents
# Function to generate GPT-3 response
def generate_gpt3_response(text1, text2):
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a helpful assignment grading assistant. at the beginning of every user input, you will be provided with the answers the teachers want followed by ### indicating that the student answers have started. You shall judge the student answers on a priority basis out of the teacher's sample answers and for a lower priority, add your own judgement for the correctness of each answer. Each Answer is worth 5 marks. Return only a json output in the following format {\"grades\":{question_number(integer):marks_allotted to the question(integer)},{\"2\":5}}, for example for the marks of first two questions you can output{\"grades\":{\"1\":4},{\"2\":5}} where the first element of the grades is the question number and the value is the marks allotted"},
{"role": "user", "content": 'Teacher Sample Answers: \n' + text1 + '\n' + '###' + '\n' + 'Student Answers: \n ' + text2},
]
)
output = response.choices[0].message.content
return output
# Function to convert JSON to answer
def json_to_answer(name, json_string):
data = json.loads(json_string)
questions = list(data['grades'].keys())
marks = list(data['grades'].values())
result = f'Name: {name}\n'
for i in range(len(questions)):
result += f'Question No. {i+1}\n'
result += f'Marks: {marks[i]}\n'
result += f'Total Marks: {sum(marks)}'
return result
# Main function for Streamlit app
def main():
st.title("Assignment Grading Assistant")
st.write("Upload the teacher and student files in .txt format")
# File upload
teacher_file = st.file_uploader("Upload Teacher File", type=['txt'])
student_file = st.file_uploader("Upload Student File", type=['txt'])
if teacher_file and student_file:
# Get student name
student_name = os.path.splitext(os.path.basename(student_file.name))[0]
# Grade button
if st.button("Grade"):
# Read file contents
teacher_text = teacher_file.read().decode('utf-8')
student_text = student_file.read().decode('utf-8')
# Generate GPT-3 response
gpt_response = generate_gpt3_response(teacher_text, student_text)
# Convert JSON to answer
answer = json_to_answer(student_name, gpt_response)
# Display answer
st.subheader("Grading Result:")
st.text_area("Result", value=answer, height=400)
# Run the app
if __name__ == "__main__":
main()
|