Eladlev's picture
Update app.py
339560f verified
raw
history blame
5.5 kB
from langchain.agents import create_tool_calling_agent
from langchain.agents import AgentExecutor
import os
from langchain_openai import ChatOpenAI
from langchain.agents import Tool
from langchain_community.utilities import GoogleSerperAPIWrapper
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import HumanMessage, AIMessage
import base64
from PIL import Image
import io
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
os.environ["SERPER_API_KEY"] = '23'
os.environ['OPENAI_API_KEY'] = "skc"
llm = ChatOpenAI(temperature=0, model_name='gpt-4o', openai_api_key=os.environ['OPENAI_API_KEY'])
search = GoogleSerperAPIWrapper()
tools = [
Tool(
name="web_search",
func=search.run,
description="useful for when you need to extract **updated** information from the web"
)
]
# prompt = ChatPromptTemplate.from_messages([
# self.system_prompt,
# self.source_prompt,
# self.generate_eval_message(url)])
agent_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant. You are provided with an image an image and a question about the image. You should answer the question. You should use the Web search tool to find the most updated information.",
),
("human", "placeholder"),
("placeholder", "{chat_history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)
agent = create_tool_calling_agent(llm, tools, agent_prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
import gradio as gr
import os
from openai import OpenAI
with gr.Blocks() as demo:
with gr.Row():
image = gr.Image(label="image", height=600)
chatbot = gr.Chatbot()
prompt = gr.Textbox(label="prompt")
serper_api = gr.Textbox(label="Serper API key")
openai_key = gr.Textbox(label="OpenAI API key")
gr.Examples(
examples=[
["https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_sketch.png",
"Describe what is in the image",
"https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_sketch.png"]
],
inputs=[image, prompt],
)
def respond(message, chat_history, image):
# Convert NumPy array to an Image object
agent_input_history = []
for c in chat_history:
agent_input_history.extend([HumanMessage(content=c[0]), AIMessage(content=c[1])])
out = agent_executor.invoke(
{
"input": message,
"chat_history": agent_input_history,
}
)
chat_history.append((message, out['output']))
return "", chat_history
def update_serper_api(serper_api):
os.environ["SERPER_API_KEY"] = serper_api
search = GoogleSerperAPIWrapper()
global tools
tools = [
Tool(
name="web_search",
func=search.run,
description="useful for when you need to extract **updated** information from the web"
)
]
agent = create_tool_calling_agent(llm, tools, agent_prompt)
global agent_executor
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
def update_agent(openai_key):
os.environ['OPENAI_API_KEY'] = openai_key
llm = ChatOpenAI(temperature=0, model_name='gpt-4o', openai_api_key=os.environ['OPENAI_API_KEY'])
agent = create_tool_calling_agent(llm, tools, agent_prompt)
global agent_executor
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
def change_image(image):
image_pil = Image.fromarray(image)
# Save the image to a bytes buffer
buffer = io.BytesIO()
image_pil.save(buffer, format="PNG") # You can also use "JPEG" if needed
# Get the byte data from the buffer and encode it to base64
image_bytes = buffer.getvalue()
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
message_content = [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,"
f"{image_base64}"}}]
image_message = HumanMessage(content=message_content)
global agent_prompt
agent_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant. You are provided with an image an image and a question about the image. You should answer the question. You should use the Web search tool to find the most updated information.",
),
image_message,
("placeholder", "{chat_history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)
agent = create_tool_calling_agent(llm, tools, agent_prompt)
global agent_executor
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
prompt.submit(respond, [prompt, chatbot, image], [prompt, chatbot])
openai_key.submit(update_agent, [openai_key], [])
serper_api.submit(update_serper_api, [serper_api], [])
image.change(change_image,[image],[])
demo.queue().launch(share=True)