Spaces:
Runtime error
Runtime error
import os | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
app = FastAPI() | |
# β Fix: Set writable cache directory for Hugging Face models | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp" | |
os.environ["HF_HOME"] = "/tmp" | |
# β Ensure cache directory exists | |
if not os.path.exists("/tmp"): | |
os.makedirs("/tmp") | |
# β Load DeepSeek-Coder-V2-Base Model with `trust_remote_code=True` | |
model_name = "deepseek-ai/DeepSeek-Coder-V2-Base" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="/tmp", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", cache_dir="/tmp", trust_remote_code=True) | |
class CodeRequest(BaseModel): | |
user_story: str | |
def generate_code(request: CodeRequest): | |
"""Generates structured AI-powered code based on user story""" | |
prompt = f"Generate structured code for: {request.user_story}" | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
output = model.generate(**inputs, max_length=300) | |
generated_code = tokenizer.decode(output[0], skip_special_tokens=True) | |
return {"generated_code": generated_code} | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |