Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from peft import PeftModel, PeftConfig
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
|
5 |
+
HUGGING_FACE_USER_NAME = "elalimy"
|
6 |
+
model_name = "my_awesome_peft_finetuned_helsinki_model"
|
7 |
+
peft_model_id = f"{HUGGING_FACE_USER_NAME}/{model_name}"
|
8 |
+
|
9 |
+
# Load model configuration (assuming it's saved locally)
|
10 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
11 |
+
# Load the base model from its local directory (replace with actual model type)
|
12 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False)
|
13 |
+
|
14 |
+
# Load the tokenizer from its local directory (replace with actual tokenizer type)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
16 |
+
|
17 |
+
# Load the Peft model (assuming it's a custom class or adaptation)
|
18 |
+
AI_model = PeftModel.from_pretrained(base_model, peft_model_id)
|
19 |
+
|
20 |
+
def generate_translation(source_text, device="cpu"):
|
21 |
+
# Encode the source text
|
22 |
+
input_ids = tokenizer.encode(source_text, return_tensors='pt').to(device)
|
23 |
+
|
24 |
+
# Move the model to the same device as input_ids
|
25 |
+
model = base_model.to(device)
|
26 |
+
|
27 |
+
# Generate the translation with adjusted decoding parameters
|
28 |
+
generated_ids = model.generate(
|
29 |
+
input_ids=input_ids,
|
30 |
+
max_length=512, # Adjust max_length if needed
|
31 |
+
num_beams=4,
|
32 |
+
length_penalty=5, # Adjust length_penalty if needed
|
33 |
+
no_repeat_ngram_size=4,
|
34 |
+
early_stopping=True
|
35 |
+
)
|
36 |
+
|
37 |
+
# Decode the generated translation excluding special tokens
|
38 |
+
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
39 |
+
|
40 |
+
return generated_text
|
41 |
+
|
42 |
+
def translate(text):
|
43 |
+
return generate_translation(text)
|
44 |
+
|
45 |
+
# Define the Gradio interface
|
46 |
+
iface = gr.Interface(
|
47 |
+
fn=translate,
|
48 |
+
inputs="text",
|
49 |
+
outputs="text",
|
50 |
+
title="Translation App",
|
51 |
+
description="Translate text using a fine-tuned Helsinki model."
|
52 |
+
)
|
53 |
+
|
54 |
+
# Launch the Gradio app
|
55 |
+
iface.launch()
|