Spaces:
Sleeping
Sleeping
from flask import Flask, request, render_template, redirect, url_for | |
import os | |
from moviepy.editor import VideoFileClip | |
import whisper | |
app = Flask(__name__) | |
from flask import Flask, request, render_template, redirect, url_for | |
import os | |
from moviepy.editor import VideoFileClip | |
import whisper | |
app = Flask(__name__) | |
# Set ffmpeg path for the Docker container environment | |
ffmpeg_path = r'/usr/bin/ffmpeg' | |
if not os.path.isdir(ffmpeg_path): | |
raise FileNotFoundError(f"FFmpeg directory not found: {ffmpeg_path}") | |
os.environ['PATH'] += os.pathsep + ffmpeg_path | |
# Load the Whisper model | |
model = whisper.load_model("medium") # Change to "large" for the most accurate model | |
def index(): | |
return render_template('index.html') | |
def upload_video(): | |
if 'video' not in request.files: | |
return redirect(url_for('index')) | |
video_file = request.files['video'] | |
if video_file.filename == '': | |
return redirect(url_for('index')) | |
# Save the video file | |
video_path = os.path.join('uploads', video_file.filename) | |
video_file.save(video_path) | |
print(f"Video saved to {video_path}") | |
# Extract audio from the video | |
try: | |
audio_path = extract_audio(video_path) | |
print(f"Audio extracted to {audio_path}") | |
if not os.path.exists(audio_path): | |
return f"Error: Audio file not found at {audio_path}" | |
except Exception as e: | |
return f"Error extracting audio: {e}" | |
# Transcribe the audio | |
try: | |
transcript = transcribe_audio(audio_path) | |
except Exception as e: | |
return f"Error transcribing audio: {e}" | |
return render_template('result.html', transcript=transcript) | |
def extract_audio(video_path): | |
audio_path = os.path.splitext(video_path)[0] + ".wav" | |
video = VideoFileClip(video_path) | |
video.audio.write_audiofile(audio_path) | |
return audio_path | |
def transcribe_audio(audio_path): | |
print(f"Transcribing audio from: {audio_path}") | |
if not os.path.exists(audio_path): | |
raise FileNotFoundError(f"Audio file not found at {audio_path}") | |
try: | |
os.system("ffmpeg -version") | |
print("FFmpeg is available") | |
except Exception as e: | |
print(f"FFmpeg is not available: {e}") | |
raise | |
try: | |
result = model.transcribe(audio_path) | |
print(f"Transcription result: {result}") | |
return result["text"] | |
except Exception as e: | |
print(f"Error during transcription: {e}") | |
raise | |
if __name__ == '__main__': | |
if not os.path.exists('uploads'): | |
os.makedirs('uploads') | |
app.run(debug=True) | |
# Add ffmpeg to the PATH | |
ffmpeg_path = r'/usr/bin/ffmpeg' # Path for ffmpeg in the Docker container | |
# Load the Whisper model | |
model = whisper.load_model("medium") # Change to "large" for the most accurate model | |
def index(): | |
return render_template('index.html') | |
def upload_video(): | |
if 'video' not in request.files: | |
return redirect(url_for('index')) | |
video_file = request.files['video'] | |
if video_file.filename == '': | |
return redirect(url_for('index')) | |
# Save the video file | |
video_path = os.path.join('uploads', video_file.filename) | |
video_file.save(video_path) | |
try: | |
# Extract audio from the video | |
audio_path = extract_audio(video_path) | |
# Transcribe the audio | |
transcript = transcribe_audio(audio_path) | |
except Exception as e: | |
return f"Error: {e}" | |
return render_template('result.html', transcript=transcript, model_name="medium") # Adjust model name accordingly | |
def extract_audio(video_path): | |
audio_path = os.path.splitext(video_path)[0] + ".wav" | |
try: | |
video = VideoFileClip(video_path) | |
video.audio.write_audiofile(audio_path) | |
except Exception as e: | |
raise RuntimeError(f"Error extracting audio: {e}") | |
return audio_path | |
def transcribe_audio(audio_path): | |
if not os.path.exists(audio_path): | |
raise FileNotFoundError(f"Audio file not found at {audio_path}") | |
try: | |
result = model.transcribe(audio_path) | |
return result["text"] | |
except Exception as e: | |
raise RuntimeError(f"Error during transcription: {e}") | |