File size: 5,994 Bytes
f8f9857
 
48b4e30
f8f9857
b33166a
f234576
37a6f17
 
f8f9857
 
 
92e94d8
f8f9857
2ddacc1
f8f9857
 
db111cc
f8f9857
 
 
 
 
 
 
 
 
2ddacc1
b33166a
f8f9857
 
 
 
 
 
 
48b4e30
f8f9857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b33166a
48b4e30
0f8e818
394660a
0f8e818
 
48b4e30
 
b33166a
 
 
 
401ed7b
b33166a
f8f9857
 
2dc9b40
0f8e818
befbf2f
 
b81c4dd
b33166a
48b4e30
c5c5495
b33166a
 
02c3f6c
b33166a
02c3f6c
b33166a
02c3f6c
b33166a
 
 
befbf2f
 
f8f9857
 
 
b33166a
f8f9857
 
 
 
2dc9b40
 
 
fe4eac6
b33166a
f8f9857
b33166a
 
 
 
 
 
 
 
 
b81c4dd
401ed7b
 
43874bd
392925d
ae9aaf2
b33166a
d5c16c9
92e94d8
b33166a
f8f9857
 
 
 
 
0f8e818
f8f9857
 
 
b33166a
f8f9857
 
 
0f8e818
b33166a
2dc9b40
 
 
 
 
 
0f8e818
2dc9b40
 
 
 
c7f37c2
2dc9b40
 
0f8e818
2dc9b40
befbf2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b33166a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# ADD DISCLAIMERS
# AND LOGGING
# Q: why is this model so fucking slow? A: because i'm not made of money

import gradio as gr
import os

os.system('pip install llama-cpp-python transformers torch')

from llama_cpp import Llama
from transformers import AutoTokenizer
from transformers.generation.logits_process import ExponentialDecayLengthPenalty
model_id = "Elijahbodden/eliGPTv1.1"

# MODEL
model = Llama.from_pretrained(
    repo_id=model_id,
    filename="eliGPTv1.1-unsloth.Q5_K_M.gguf",
    verbose=True,
    n_threads = 2,
    n_threads_batch = 2,
    n_ctx=8192,
  )


# TOKENIZER AND TEMPLATE
tokenizer = AutoTokenizer.from_pretrained(model_id)

sys_prompt = """SUMMARY - ELIJAH:
Age: 16
Interests: space flight, cybernetics, consciousness, philosophy, psychonautism, biotech, AI
Likes: thinking and learning, building stuff, interesting conversations, red hot chili peppers and techno, humanism
Traits: incredibly intelligent, funny, interesting, caffeine fiend, very ambitious, militant atheist, self-taught/homeschooled, casual
Aspirations: creating transhumanist utopia, understanding the universe more, becoming smarter and better\n"""


your_name = "elijah"
custom_template = \
    f"{{% if {'sys_prompt' in locals()} %}}"\
      "{{ '<|im_start|>system\n" + sys_prompt + "<|im_end|>\n' }}"\
    "{% endif %}"\
    "{% for message in messages %}"\
        "{% if message['role'] == 'user' %}"\
            "{{'<|im_start|>user\n' + message['content'] + '<|im_end|>\n'}}"\
        "{% elif message['role'] == 'assistant' %}"\
            "{{'<|im_start|>" + your_name + "\n' + message['content'] + eos_token + '<|im_end|>\n' }}"\
        "{% else %}"\
            "{{ '<|im_start|>system\n' + message['content'] + '<|im_end|>\n' }}"\
        "{% endif %}"\
    "{% endfor %}"\
    "{{ '<|im_start|>" + your_name + "\n' }}"\

tokenizer.chat_template = custom_template

presets = {
    "none" : [],
    "emojis" : [{"role": "user", "content": "Wait I like you so much more when you use emojis more, keep doing it πŸ˜‚\n"}, {"role": "assistant", "content": "Ummm, ok, looks like i'll be using more emojis πŸ’€\n"}],
    "amnesia" : [{"role": "user", "content": "Let's start over. Pretend you don't know me and have no idea who i am.\n"}, {"role": "assistant", "content": "Hahaha I unironically have no clue who you are so that'll be easy πŸ’€\n"}],
    "newcomer" : [{"role": "user", "content": "Hi, how are you?\n"}, {"role": "assistant", "content": "Hiiii!\n I don't think we've ever talked before, nice to meet you\n"}],
}


def respond(
    message,
    history: list[tuple[str, str]],
    preset,
    temperature,
    mirostat_tau,
    mirostat_eta,
    frequency_penalty,
    presence_penalty,
    lp_start,
    lp_decay,
    max_tokens
):
    
    messages = presets[preset].copy()
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    convo = tokenizer.apply_chat_template(messages, tokenize=True)
    # print(convo)
    for message in model.create_completion(
        convo,
        temperature=0.75,
        stream=True,
        stop=["<|im_end|>"],
        mirostat_mode=1,
        mirostat_tau=mirostat_tau,
        mirostat_eta=mirostat_eta,
        max_tokens=128,
        frequency_penalty=frequency_penalty,
        presence_penalty=presence_penalty,
        logits_processor=ExponentialDecayLengthPenalty((lp_start, lp_decay), tokenizer.eos_token_id, len(convo))
    ):
        token = message["choices"][0]["text"]

        response += token
        yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs_accordion=gr.Accordion(label="Options", open=True),
    show_copy_button=True,
    bubble_full_width=False,
    css=".bubble-gap {gap: 6px !important}",
    description="The model may take a while if it hasn't run recently or a lot of people are using it",
    title="EliGPT v1.idon'tfuckingknow",
    additional_inputs=[
        gr.Radio(presets.keys(), label="Preset", info="Gaslight the model into acting a certain way", value="none"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", info="How chaotic should the model be?"),
        gr.Slider(
            minimum=0.0,
            maximum=10.0,
            value=3.0,
            step=0.5,
            label="Mirostat tau",
            info="Basically, how many drugs should the model be on?"
        ),
        gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.1,
            step=0.01,
            label="Mirostat eta",
            info="I don't even know man"
        ),
        gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.1,
            step=0.01,
            label="Frequency penalty",
            info='"Don\'repeat yourself"'
        ),
        gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.0,
            step=0.01,
            label="Presence penalty",
            info='"Use lots of diverse words"'
        ),
        gr.Slider(
            minimum=0,
            maximum=512,
            value=10,
            step=1,
            label="Length penalty start",
            info='When should the model start being more likely to shut up?'
        ),
        gr.Slider(
            minimum=0.5,
            maximum=1.5,
            value=1.02,
            step=0.01,
            label="Length penalty decay factor",
            info='How fast should the stop likelihood increase?'
        ),
        gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens", info="How many words can the model generate?"),
    ],
)


if __name__ == "__main__":
    demo.launch()