Spaces:
Running
Running
File size: 4,097 Bytes
f8f9857 48b4e30 f8f9857 b33166a f234576 f8f9857 2ddacc1 f8f9857 db111cc f8f9857 2ddacc1 b33166a f8f9857 48b4e30 f8f9857 b33166a 48b4e30 f5a76a0 48b4e30 b33166a f8f9857 b33166a 47c25cc 48b4e30 c5c5495 b33166a 02c3f6c b33166a 02c3f6c b33166a 02c3f6c b33166a d0a001b 00114ec f8f9857 b33166a f8f9857 b33166a f8f9857 b33166a 42ddbf6 43874bd 392925d ae9aaf2 b33166a f8f9857 b33166a f8f9857 b33166a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# ADD DISCLAIMERS
# AND LOGGING
# Q: why is this model so fucking slow? A: because i'm not made of money
import gradio as gr
import os
os.system("apt install libopenblas-dev")
os.system("make clean && LLAMA_OPENBLAS=1 make")
os.system('CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python transformers')
from llama_cpp import Llama
from transformers import AutoTokenizer
model_id = "Elijahbodden/eliGPTv1.1"
# MODEL
model = Llama.from_pretrained(
repo_id=model_id,
filename="eliGPTv1.1-unsloth.Q5_K_M.gguf",
verbose=True,
n_threads = 2,
n_threads_batch = 2,
n_ctx=8192,
)
# TOKENIZER AND TEMPLATE
tokenizer = AutoTokenizer.from_pretrained(model_id)
sys_prompt = """SUMMARY - ELIJAH:
Age: 16
Interests: space flight, cybernetics, consciousness, philosophy, psychonautism, biotech, AI
Likes: thinking and learning, building stuff, interesting conversations, red hot chili peppers and techno, humanism
Traits: incredibly intelligent, funny, interesting, caffeine fiend, very ambitious, militant atheist, self-taught/homeschooled, casual
Aspirations: creating transhumanist utopia, understanding the universe more, becoming smarter and better\n"""
your_name = "elijah"
custom_template = \
f"{{% if {'sys_prompt' in locals()} %}}"\
"{{ '<|im_start|>system\n" + sys_prompt + "<|im_end|>\n' }}"\
"{% endif %}"\
"{% for message in messages %}"\
"{% if message['role'] == 'user' %}"\
"{{'<|im_start|>user\n' + message['content'] + '<|im_end|>\n'}}"\
"{% elif message['role'] == 'assistant' %}"\
"{{'<|im_start|>" + your_name + "\n' + message['content'] + eos_token + '<|im_end|>\n' }}"\
"{% else %}"\
"{{ '<|im_start|>system\n' + message['content'] + '<|im_end|>\n' }}"\
"{% endif %}"\
"{% endfor %}"\
"{{ '<|im_start|>" + your_name + "\n' }}"\
tokenizer.chat_template = custom_template
presets = {
"emojis" : [{"role": "user", "content": "Wait I like you so much more when you use emojis more, keep doing it π\n"}, {"role": "assistant", "content": "Ummm, ok, looks like i'll be using more emojis π\n"}],
"none" : []
}
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
mirostat_tau,
mirostat_eta,
):
preset = "none"
messages = presets[preset].copy()
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
convo = tokenizer.apply_chat_template(messages, tokenize=False)
print(convo)
for message in model.create_completion(
convo,
temperature=0.75,
stream=True,
stop=["<|im_end|>"],
mirostat_mode=1,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
max_tokens=128
):
token = message["choices"][0]["text"]
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs_accordion="The juicy stuff (settings)",
css=".bubble-gap {gap: 6px !important}",
description="The model may take a while if it hasn't run recently or a lot of people are using it",
title="EliGPT v1.idon'tfuckingknow",
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.0,
maximum=10.0,
value=3.0,
step=0.5,
label="Mirostat tau",
),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.01,
label="Mirostat eta",
),
],
)
if __name__ == "__main__":
demo.launch() |