File size: 3,519 Bytes
f8f9857
 
 
 
b33166a
f234576
f8f9857
 
 
 
 
 
 
2ddacc1
f8f9857
 
db111cc
f8f9857
 
 
 
 
 
 
 
 
2ddacc1
b33166a
f8f9857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b33166a
 
 
 
 
 
 
f8f9857
 
b33166a
 
 
f8f9857
b33166a
f8f9857
b33166a
f8f9857
b33166a
 
 
f8f9857
 
 
 
 
b33166a
f8f9857
 
 
 
 
b33166a
f8f9857
b33166a
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f9857
 
 
 
 
 
 
 
b33166a
f8f9857
 
 
b33166a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# ADD DISCLAIMERS
# AND LOGGING


import gradio as gr
import os
os.system("apt install libopenblas-dev")
os.system("make clean && LLAMA_OPENBLAS=1 make")
os.system('CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python transformers')

from llama_cpp import Llama
from transformers import AutoTokenizer
model_id = "Elijahbodden/eliGPTv1.1"

# MODEL
model = Llama.from_pretrained(
    repo_id=model_id,
    filename="eliGPTv1.1-unsloth.Q5_K_M.gguf",
    verbose=True,
    n_threads = 2,
    n_threads_batch = 2,
    n_ctx=8192,
  )


# TOKENIZER AND TEMPLATE
tokenizer = AutoTokenizer.from_pretrained(model_id)

sys_prompt = """SUMMARY - ELIJAH:
Age: 16
Interests: space flight, cybernetics, consciousness, philosophy, psychonautism, biotech, AI
Likes: thinking and learning, building stuff, interesting conversations, red hot chili peppers and techno, humanism
Traits: incredibly intelligent, funny, interesting, caffeine fiend, very ambitious, militant atheist, self-taught/homeschooled, casual
Aspirations: creating transhumanist utopia, understanding the universe more, becoming smarter and better\n"""

your_name = "elijah"
custom_template = \
    f"{{% if {'sys_prompt' in locals()} %}}"\
      "{{ '<|im_start|>system\n" + sys_prompt + "<|im_end|>\n' }}"\
    "{% endif %}"\
    "{% for message in messages %}"\
        "{% if message['role'] == 'user' %}"\
            "{{'<|im_start|>user\n' + message['content'] + '<|im_end|>\n'}}"\
        "{% elif message['role'] == 'assistant' %}"\
            "{{'<|im_start|>" + your_name + "\n' + message['content'] + eos_token + '<|im_end|>\n' }}"\
        "{% else %}"\
            "{{ '<|im_start|>system\n' + message['content'] + '<|im_end|>\n' }}"\
        "{% endif %}"\
    "{% endfor %}"\
    "{{ '<|im_start|>" + your_name + "\n' }}"\

tokenizer.chat_template = custom_template


def respond(
    message,
    history: list[tuple[str, str]],
    max_tokens,
    temperature,
    mirostat_tau,
    mirostat_eta,
):
    for val in history:
        if val[0]:
            messages.append({"from": "human", "content": val[0]})
        if val[1]:
            messages.append({"from": "gpt", "content": val[1]})

    messages.append({"from": "human", "content": message})

    response = ""

    tokenizer.apply_chat_template(messages, tokenize=False)
    
    for message in model.create_completion(
        convo,
        temperature=0.75,
        stream=True,
        stop=["<|im_end|>"],
        mirostat_mode=1,
        mirostat_tau=mirostat_tau,
        mirostat_eta=mirostat_eta,
        max_tokens=128
    ):
        token = message["choices"][0]["text"]

        response += token
        yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.0,
            maximum=10.0,
            value=3.0,
            step=0.5,
            label="Mirostat tau",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.1,
            step=0.01,
            label="Mirostat eta",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()