Spaces:
Running
Running
File size: 6,628 Bytes
f8f9857 48b4e30 f8f9857 b33166a f234576 37a6f17 f8f9857 3fcefb4 502727a f8f9857 2ddacc1 f8f9857 db111cc f8f9857 2ddacc1 b33166a f8f9857 48b4e30 f8f9857 b33166a 48b4e30 0f8e818 394660a 0f8e818 48b4e30 b33166a 8deb142 5271c72 8deb142 0edb841 d2652c3 b33166a 401ed7b b33166a f8f9857 2dc9b40 0f8e818 befbf2f b81c4dd b33166a 48b4e30 c5c5495 b33166a 02c3f6c b33166a 02c3f6c b33166a 02c3f6c b33166a befbf2f f8f9857 b33166a f8f9857 2dc9b40 8deb142 b33166a f8f9857 b33166a 502727a f63ef4c 502727a b33166a e6fd55c b33166a b81c4dd 43874bd 1077094 392925d ae9aaf2 b33166a d5c16c9 92e94d8 b33166a f8f9857 0f8e818 f8f9857 b33166a f8f9857 0f8e818 b33166a 2dc9b40 0f8e818 2dc9b40 c7f37c2 2dc9b40 0f8e818 2dc9b40 befbf2f b33166a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# ADD DISCLAIMERS
# AND LOGGING
# Q: why is this model so fucking slow? A: because i'm not made of money
import gradio as gr
import os
os.system('pip install llama-cpp-python transformers torch')
from llama_cpp import Llama
from transformers import AutoTokenizer
import torch
from huggingface_hub import upload_file
import json
from uuid import uuid4
# For logging
def upload_json_to_hub(json, file_id):
upload_file(path_or_fileobj=json.dumps(json).encode('utf-8'), path_in_repo=file_id, repo_id="Elijahbodden/EliGPT-convologs", token="os.getenv['HF_API_TOKEN']", repo_type="dataset")
model_id = "Elijahbodden/eliGPTv1.1"
# MODEL
model = Llama.from_pretrained(
repo_id=model_id,
filename="eliGPTv1.1-unsloth.Q5_K_M.gguf",
verbose=True,
n_threads = 2,
n_threads_batch = 2,
n_ctx=8192,
)
# TOKENIZER AND TEMPLATE
tokenizer = AutoTokenizer.from_pretrained(model_id)
sys_prompt = """SUMMARY - ELIJAH:
Age: 16
Interests: space flight, cybernetics, consciousness, philosophy, psychonautism, biotech, AI
Likes: thinking and learning, building stuff, interesting conversations, red hot chili peppers and techno, humanism
Traits: incredibly intelligent, funny, interesting, caffeine fiend, very ambitious, militant atheist, self-taught/homeschooled, casual
Aspirations: creating transhumanist utopia, understanding the universe more, becoming smarter and better\n"""
your_name = "elijah"
custom_template = \
f"{{% if {'sys_prompt' in locals()} %}}"\
"{{ '<|im_start|>system\n" + sys_prompt + "<|im_end|>\n' }}"\
"{% endif %}"\
"{% for message in messages %}"\
"{% if message['role'] == 'user' %}"\
"{{'<|im_start|>user\n' + message['content'] + '<|im_end|>\n'}}"\
"{% elif message['role'] == 'assistant' %}"\
"{{'<|im_start|>" + your_name + "\n' + message['content'] + eos_token + '<|im_end|>\n' }}"\
"{% else %}"\
"{{ '<|im_start|>system\n' + message['content'] + '<|im_end|>\n' }}"\
"{% endif %}"\
"{% endfor %}"\
"{{ '<|im_start|>" + your_name + "\n' }}"\
tokenizer.chat_template = custom_template
presets = {
"none" : [],
"emojis" : [{"role": "user", "content": "Wait I like you so much more when you use emojis more, keep doing it π\n"}, {"role": "assistant", "content": "Ummm, ok, looks like i'll be using more emojis π\n"}],
"amnesia" : [{"role": "user", "content": "Let's start over. Pretend you don't know me and have no idea who i am.\n"}, {"role": "assistant", "content": "Hahaha I unironically have no clue who you are so that'll be easy π\n"}],
"newcomer" : [{"role": "user", "content": "Hi, how are you?\n"}, {"role": "assistant", "content": "Hiiii!\n I don't think we've ever talked before, nice to meet you\n"}],
}
def custom_lp_logits_processor(ids, logits, lp_start, lp_decay, prompt_tok_len):
generated_tok_number = len(ids) - prompt_tok_len
if (generated_tok_number > lp_start):
print(len(ids), lp_start, pow(lp_decay, len(ids)-lp_start))
logits[tokenizer.eos_token_id] *= pow(lp_decay, generated_tok_number-lp_start)
return logits
def respond(
message,
history: list[tuple[str, str]],
preset,
temperature,
mirostat_tau,
mirostat_eta,
frequency_penalty,
presence_penalty,
lp_start,
lp_decay,
max_tokens
):
messages = presets[preset].copy()
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
convo = tokenizer.apply_chat_template(messages, tokenize=True)
# print(convo)
for message in model.create_completion(
convo,
temperature=0.75,
stream=True,
stop=["<|im_end|>"],
mirostat_mode=1,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
max_tokens=128,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
logits_processor=lambda ids, logits: custom_lp_logits_processor(ids, logits, lp_start, lp_decay, len(convo))
):
token = message["choices"][0]["text"]
response += token
yield response
messages.append({"role": "assistant", "content": response})
# Yes we make a new file every completion because fuck my life
upload_json_to_hub(messages, uuid4())
demo = gr.ChatInterface(
respond,
additional_inputs_accordion=gr.Accordion(label="Options", open=True),
css=".bubble-gap {gap: 6px !important}",
theme="shivi/calm_seafoam",
description="The model may take a while if it hasn't run recently or a lot of people are using it",
title="EliGPT v1.idon'tfuckingknow",
additional_inputs=[
gr.Radio(presets.keys(), label="Preset", info="Gaslight the model into acting a certain way", value="none"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", info="How chaotic should the model be?"),
gr.Slider(
minimum=0.0,
maximum=10.0,
value=3.0,
step=0.5,
label="Mirostat tau",
info="Basically, how many drugs should the model be on?"
),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.01,
label="Mirostat eta",
info="I don't even know man"
),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.01,
label="Frequency penalty",
info='"Don\'repeat yourself"'
),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.01,
label="Presence penalty",
info='"Use lots of diverse words"'
),
gr.Slider(
minimum=0,
maximum=512,
value=10,
step=1,
label="Length penalty start",
info='When should the model start being more likely to shut up?'
),
gr.Slider(
minimum=0.5,
maximum=1.5,
value=1.02,
step=0.01,
label="Length penalty decay factor",
info='How fast should the stop likelihood increase?'
),
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens", info="How many words can the model generate?"),
],
)
if __name__ == "__main__":
demo.launch() |