Spaces:
Running
Running
# ADD DISCLAIMERS | |
import os | |
os.system('pip install llama-cpp-python transformers torch') | |
import gradio as gr | |
from llama_cpp import Llama | |
from transformers import AutoTokenizer | |
from huggingface_hub import upload_file | |
import json | |
from uuid import uuid4 | |
model_id = "Elijahbodden/eliGPTv1.1" | |
# MODEL | |
model = Llama.from_pretrained( | |
repo_id=model_id, | |
filename="eliGPTv1.1-unsloth.Q5_K_M.gguf", | |
verbose=True, | |
n_threads = 2, | |
n_threads_batch = 2, | |
n_ctx=8192, | |
) | |
# TOKENIZER AND TEMPLATE | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
sys_prompt = """SUMMARY - ELIJAH: | |
Age: 16 | |
Interests: space flight, cybernetics, consciousness, philosophy, psychonautism, biotech, AI | |
Likes: thinking and learning, building stuff, interesting conversations, red hot chili peppers and techno, humanism | |
Traits: incredibly intelligent, funny, interesting, caffeine fiend, very ambitious, militant atheist, self-taught/homeschooled, casual | |
Aspirations: creating transhumanist utopia, understanding the universe more, becoming smarter and better\n""" | |
your_name = "elijah" | |
custom_template = \ | |
f"{{% if {'sys_prompt' in locals()} %}}"\ | |
"{{ '<|im_start|>system\n" + sys_prompt + "<|im_end|>\n' }}"\ | |
"{% endif %}"\ | |
"{% for message in messages %}"\ | |
"{% if message['role'] == 'user' %}"\ | |
"{{'<|im_start|>user\n' + message['content'] + '\n<|im_end|>\n'}}"\ | |
"{% elif message['role'] == 'assistant' %}"\ | |
"{{'<|im_start|>" + your_name + "\n' + message['content'] + eos_token + '<|im_end|>\n' }}"\ | |
"{% else %}"\ | |
"{{ '<|im_start|>system\n' + message['content'] + '<|im_end|>\n' }}"\ | |
"{% endif %}"\ | |
"{% endfor %}"\ | |
"{{ '<|im_start|>" + your_name + "\n' }}"\ | |
tokenizer.chat_template = custom_template | |
presets = { | |
# Make sure assistant responses end with a "\n" because reasons | |
"Default" : [{"role": "user", "content": "good convo, bye"}, {"role": "assistant", "content": "Haha cool ttyl\n"}], | |
"Rizz ????" : [{"role": "user", "content": "omg it's so hot when you flirt with me"}, {"role": "assistant", "content": "haha well you're lucky can even string a sentence together, the way you take my breath away π\n"}, {"role": "user", "content": "alright love you, gn!"}, {"role": "assistant", "content": "ttyl babe π\n"}], | |
"Thinky" : [{"role": "user", "content": "Woah you just totally blew my mind\ngehh now the fermi paradox is going to be bugging me 24/7\nok ttyl"}, {"role": "assistant", "content": "nah our deep convos are always the best, we should talk again soon\nttyl\n"}], | |
} | |
def custom_lp_logits_processor(ids, logits, lp_start, lp_decay, prompt_tok_len): | |
generated_tok_number = len(ids) - prompt_tok_len | |
if (generated_tok_number > lp_start): | |
print(len(ids), lp_start, pow(lp_decay, len(ids)-lp_start)) | |
logits[tokenizer.eos_token_id] *= pow(lp_decay, generated_tok_number-lp_start) | |
return logits | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
preset, | |
temperature, | |
min_p, | |
lp_start, | |
lp_decay, | |
frequency_penalty, | |
presence_penalty, | |
max_tokens | |
): | |
messages = presets[preset].copy() | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
print(tokenizer.apply_chat_template(messages, tokenize=False)) | |
convo = tokenizer.apply_chat_template(messages, tokenize=True) | |
for message in model.create_completion( | |
convo, | |
temperature=temperature, | |
stream=True, | |
stop=["<|im_end|>"], | |
min_p=min_p, | |
max_tokens=max_tokens, | |
# Disable top-p pruning | |
top_k=100000000, | |
frequency_penalty=frequency_penalty, | |
presence_penalty=presence_penalty, | |
logits_processor=lambda ids, logits: custom_lp_logits_processor(ids, logits, lp_start, lp_decay, len(convo)) | |
): | |
token = message["choices"][0]["text"] | |
response += token | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs_accordion=gr.Accordion(label="Options", open=True), | |
css=".bubble-gap {gap: 6px !important}", | |
theme="shivi/calm_seafoam", | |
description="The model may take a while if it hasn't run recently or a lot of people are using it", | |
title="EliGPT v1.3", | |
additional_inputs=[ | |
gr.Radio(presets.keys(), label="Personality preset", info="VERY SLIGHTLY influence the model's personality [WARNING, IF YOU CHANGE THIS WHILE THERE ARE MESSAGES IN THE CHAT, THE MODEL WILL BECOME VERY SLOW]", value="Default"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature", info="How chaotic should the model be?"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Min_p", info="Lower values give it more \"personality\""), | |
gr.Slider(minimum=0, maximum=512, value=5, step=1, label="Length penalty start", info='When should the model start being more likely to shut up?'), | |
gr.Slider(minimum=0.5, maximum=1.5, value=1.01, step=0.001, label="Length penalty decay factor", info='How fast should that stop likelihood increase?'), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Frequency penalty", info='"Don\'repeat yourself"'), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Presence penalty", info='"Use lots of diverse words"'), | |
gr.Slider(minimum=1, maximum=1024, value=1024, step=1, label="Max new tokens", info="How many words can the model generate at most?"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |