Elijahbodden commited on
Commit
d2a0386
·
verified ·
1 Parent(s): 31e2bd9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -77,8 +77,7 @@ def respond(
77
  temperature,
78
  lp_start,
79
  lp_decay,
80
- mirostat_eta,
81
- mirostat_tau,
82
  frequency_penalty,
83
  presence_penalty,
84
  max_tokens
@@ -101,10 +100,10 @@ def respond(
101
  temperature=temperature,
102
  stream=True,
103
  stop=["<|im_end|>"],
104
- mirostat_mode=2,
105
- mirostat_tau=mirostat_tau,
106
- mirostat_eta=mirostat_eta,
107
  max_tokens=max_tokens,
 
 
108
  frequency_penalty=frequency_penalty,
109
  presence_penalty=presence_penalty,
110
  logits_processor=lambda ids, logits: custom_lp_logits_processor(ids, logits, lp_start, lp_decay, len(convo))
@@ -132,8 +131,7 @@ demo = gr.ChatInterface(
132
  gr.Slider(minimum=0.1, maximum=4.0, value=0.8, step=0.1, label="Temperature", info="How chaotic should the model be?"),
133
  gr.Slider(minimum=0, maximum=512, value=32, step=1, label="Length penalty start", info='When should the model start being more likely to shut up?'),
134
  gr.Slider(minimum=0.5, maximum=1.5, value=1.02, step=0.01, label="Length penalty decay factor", info='How fast should that stop likelihood increase?'),
135
- gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Mirostat eta", info="How grammatical the model is or something"),
136
- gr.Slider(minimum=0.0, maximum=10.0, value=3.0, step=0.5, label="Mirostat tau", info="Lower number keeps hallucinations to a minimum"),
137
  gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Frequency penalty", info='"Don\'repeat yourself"'),
138
  gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Presence penalty", info='"Use lots of diverse words"'),
139
  gr.Slider(minimum=1, maximum=1024, value=1024, step=1, label="Max new tokens", info="How many words can the model generate at most?"),
 
77
  temperature,
78
  lp_start,
79
  lp_decay,
80
+ min_p,
 
81
  frequency_penalty,
82
  presence_penalty,
83
  max_tokens
 
100
  temperature=temperature,
101
  stream=True,
102
  stop=["<|im_end|>"],
103
+ min_p=min_p,
 
 
104
  max_tokens=max_tokens,
105
+ # Disable top-p pruning
106
+ top_k=100000000,
107
  frequency_penalty=frequency_penalty,
108
  presence_penalty=presence_penalty,
109
  logits_processor=lambda ids, logits: custom_lp_logits_processor(ids, logits, lp_start, lp_decay, len(convo))
 
131
  gr.Slider(minimum=0.1, maximum=4.0, value=0.8, step=0.1, label="Temperature", info="How chaotic should the model be?"),
132
  gr.Slider(minimum=0, maximum=512, value=32, step=1, label="Length penalty start", info='When should the model start being more likely to shut up?'),
133
  gr.Slider(minimum=0.5, maximum=1.5, value=1.02, step=0.01, label="Length penalty decay factor", info='How fast should that stop likelihood increase?'),
134
+ gr.Slider(minimum=0.0, maximum=10.0, value=3.0, step=0.5, label="Min_p", info="Lower values make it more random (ratio between lowest-probability and highest-probability tokens)"),
 
135
  gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Frequency penalty", info='"Don\'repeat yourself"'),
136
  gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Presence penalty", info='"Use lots of diverse words"'),
137
  gr.Slider(minimum=1, maximum=1024, value=1024, step=1, label="Max new tokens", info="How many words can the model generate at most?"),