Elijahbodden commited on
Commit
e0f5396
·
verified ·
1 Parent(s): 9ba5511

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -75,12 +75,12 @@ def respond(
75
  history: list[tuple[str, str]],
76
  preset,
77
  temperature,
78
- mirostat_tau,
 
79
  mirostat_eta,
 
80
  frequency_penalty,
81
  presence_penalty,
82
- lp_start,
83
- lp_decay,
84
  max_tokens
85
  ):
86
 
@@ -104,7 +104,7 @@ def respond(
104
  mirostat_mode=1,
105
  mirostat_tau=mirostat_tau,
106
  mirostat_eta=mirostat_eta,
107
- max_tokens=128,
108
  frequency_penalty=frequency_penalty,
109
  presence_penalty=presence_penalty,
110
  logits_processor=lambda ids, logits: custom_lp_logits_processor(ids, logits, lp_start, lp_decay, len(convo))
@@ -129,14 +129,14 @@ demo = gr.ChatInterface(
129
  title="EliGPT v1.3",
130
  additional_inputs=[
131
  gr.Radio(presets.keys(), label="Preset", info="Gaslight the model into acting a certain way - WARNING, IF YOU CHANGE THIS WHILE THERE ARE MESSAGES IN THE CHAT, THE MODEL WILL BECOME VERY SLOW FOR YOU", value="none"),
132
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", info="How chaotic should the model be?"),
133
- gr.Slider(minimum=0.0, maximum=10.0, value=3.0, step=0.5, label="Mirostat tau", info="Basically, how many drugs should the model be on?"),
134
- gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Mirostat eta", info="I don't even know man"),
135
- gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Frequency penalty", info='"Don\'repeat yourself"'),
136
- gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.01, label="Presence penalty", info='"Use lots of diverse words"'),
137
  gr.Slider(minimum=0, maximum=512, value=32, step=1, label="Length penalty start", info='When should the model start being more likely to shut up?'),
138
- gr.Slider(minimum=0.5, maximum=1.5, value=1.02, step=0.01, label="Length penalty decay factor", info='How fast should the stop likelihood increase?'),
139
- gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens", info="How many words can the model generate?"),
 
 
 
 
140
  ],
141
  )
142
 
 
75
  history: list[tuple[str, str]],
76
  preset,
77
  temperature,
78
+ lp_start,
79
+ lp_decay,
80
  mirostat_eta,
81
+ mirostat_tau,
82
  frequency_penalty,
83
  presence_penalty,
 
 
84
  max_tokens
85
  ):
86
 
 
104
  mirostat_mode=1,
105
  mirostat_tau=mirostat_tau,
106
  mirostat_eta=mirostat_eta,
107
+ max_tokens=max_tokens,
108
  frequency_penalty=frequency_penalty,
109
  presence_penalty=presence_penalty,
110
  logits_processor=lambda ids, logits: custom_lp_logits_processor(ids, logits, lp_start, lp_decay, len(convo))
 
129
  title="EliGPT v1.3",
130
  additional_inputs=[
131
  gr.Radio(presets.keys(), label="Preset", info="Gaslight the model into acting a certain way - WARNING, IF YOU CHANGE THIS WHILE THERE ARE MESSAGES IN THE CHAT, THE MODEL WILL BECOME VERY SLOW FOR YOU", value="none"),
132
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.8, step=0.1, label="Temperature", info="How chaotic should the model be?"),
 
 
 
 
133
  gr.Slider(minimum=0, maximum=512, value=32, step=1, label="Length penalty start", info='When should the model start being more likely to shut up?'),
134
+ gr.Slider(minimum=0.5, maximum=1.5, value=1.02, step=0.01, label="Length penalty decay factor", info='How fast should that stop likelihood increase?'),
135
+ gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Mirostat eta", info="How grammatical the model is or something"),
136
+ gr.Slider(minimum=0.0, maximum=10.0, value=3.0, step=0.5, label="Mirostat tau", info="Lower number keeps hallucinations to a minimum"),
137
+ gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Frequency penalty", info='"Don\'repeat yourself"'),
138
+ gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Presence penalty", info='"Use lots of diverse words"'),
139
+ gr.Slider(minimum=1, maximum=1024, value=1024, step=1, label="Max new tokens", info="How many words can the model generate at most?"),
140
  ],
141
  )
142