# ADD DISCLAIMERS # AND LOGGING # Q: why is this model so fucking slow? A: because i'm not made of money import gradio as gr import os os.system('pip install llama-cpp-python transformers torch') from llama_cpp import Llama from transformers import AutoTokenizer import torch from transformers.generation.logits_process import ExponentialDecayLengthPenalty model_id = "Elijahbodden/eliGPTv1.1" # MODEL model = Llama.from_pretrained( repo_id=model_id, filename="eliGPTv1.1-unsloth.Q5_K_M.gguf", verbose=True, n_threads = 2, n_threads_batch = 2, n_ctx=8192, ) # TOKENIZER AND TEMPLATE tokenizer = AutoTokenizer.from_pretrained(model_id) sys_prompt = """SUMMARY - ELIJAH: Age: 16 Interests: space flight, cybernetics, consciousness, philosophy, psychonautism, biotech, AI Likes: thinking and learning, building stuff, interesting conversations, red hot chili peppers and techno, humanism Traits: incredibly intelligent, funny, interesting, caffeine fiend, very ambitious, militant atheist, self-taught/homeschooled, casual Aspirations: creating transhumanist utopia, understanding the universe more, becoming smarter and better\n""" your_name = "elijah" custom_template = \ f"{{% if {'sys_prompt' in locals()} %}}"\ "{{ '<|im_start|>system\n" + sys_prompt + "<|im_end|>\n' }}"\ "{% endif %}"\ "{% for message in messages %}"\ "{% if message['role'] == 'user' %}"\ "{{'<|im_start|>user\n' + message['content'] + '<|im_end|>\n'}}"\ "{% elif message['role'] == 'assistant' %}"\ "{{'<|im_start|>" + your_name + "\n' + message['content'] + eos_token + '<|im_end|>\n' }}"\ "{% else %}"\ "{{ '<|im_start|>system\n' + message['content'] + '<|im_end|>\n' }}"\ "{% endif %}"\ "{% endfor %}"\ "{{ '<|im_start|>" + your_name + "\n' }}"\ tokenizer.chat_template = custom_template presets = { "none" : [], "emojis" : [{"role": "user", "content": "Wait I like you so much more when you use emojis more, keep doing it 😂\n"}, {"role": "assistant", "content": "Ummm, ok, looks like i'll be using more emojis 💀\n"}], "amnesia" : [{"role": "user", "content": "Let's start over. Pretend you don't know me and have no idea who i am.\n"}, {"role": "assistant", "content": "Hahaha I unironically have no clue who you are so that'll be easy 💀\n"}], "newcomer" : [{"role": "user", "content": "Hi, how are you?\n"}, {"role": "assistant", "content": "Hiiii!\n I don't think we've ever talked before, nice to meet you\n"}], } def custom_lp_logits_processor(ids, logits, lp_start, lp_decay): # if (len(ids) > lp_start): # logits[tokenizer.eos_token_id] *= pow(lp_decay, len(ids)-lp_start) return logits def respond( message, history: list[tuple[str, str]], preset, temperature, mirostat_tau, mirostat_eta, frequency_penalty, presence_penalty, lp_start, lp_decay, max_tokens ): messages = presets[preset].copy() for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" convo = tokenizer.apply_chat_template(messages, tokenize=True) # print(convo) for message in model.create_completion( convo, temperature=0.75, stream=True, stop=["<|im_end|>"], mirostat_mode=1, mirostat_tau=mirostat_tau, mirostat_eta=mirostat_eta, max_tokens=128, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, logits_processor=lambda ids, logits: custom_lp_logits_processor(ids, logits, lp_start, lp_decay) ): token = message["choices"][0]["text"] response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs_accordion=gr.Accordion(label="Options", open=True), css=".bubble-gap {gap: 6px !important}", description="The model may take a while if it hasn't run recently or a lot of people are using it", title="EliGPT v1.idon'tfuckingknow", additional_inputs=[ gr.Radio(presets.keys(), label="Preset", info="Gaslight the model into acting a certain way", value="none"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", info="How chaotic should the model be?"), gr.Slider( minimum=0.0, maximum=10.0, value=3.0, step=0.5, label="Mirostat tau", info="Basically, how many drugs should the model be on?" ), gr.Slider( minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Mirostat eta", info="I don't even know man" ), gr.Slider( minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Frequency penalty", info='"Don\'repeat yourself"' ), gr.Slider( minimum=0.0, maximum=1.0, value=0.0, step=0.01, label="Presence penalty", info='"Use lots of diverse words"' ), gr.Slider( minimum=0, maximum=512, value=10, step=1, label="Length penalty start", info='When should the model start being more likely to shut up?' ), gr.Slider( minimum=0.5, maximum=1.5, value=1.02, step=0.01, label="Length penalty decay factor", info='How fast should the stop likelihood increase?' ), gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens", info="How many words can the model generate?"), ], ) if __name__ == "__main__": demo.launch()