from transformers import pipeline from transformers import AutoModelForSeq2SeqLM from transformers import AutoTokenizer import argparse # Load trained model model = AutoModelForSeq2SeqLM.from_pretrained("output/reframer") tokenizer = AutoTokenizer.from_pretrained("output/reframer") reframer = pipeline('summarization', model=model, tokenizer=tokenizer) def get_args(): """ args from input """ parser = argparse.ArgumentParser(description='HSIC-Bottleneck research') parser.add_argument('-ipt', '--input', required=True, type=str, help='input path') args = parser.parse_args() return args def main(): args = get_args() input_file = args.input with open(input_file, 'r') as file: data = file.read().rstrip() print(reframer(data)[0]['summary_text']) if __name__ == '__main__': main()