Spaces:
Sleeping
Sleeping
Commit
·
9a0151c
1
Parent(s):
ed66bbb
Upload 5 files
Browse files- Stress identification NLP +0 -0
- Stress.csv +0 -0
- Untitled.ipynb +1220 -0
- app.py +104 -0
- tfidf_vectorizer.joblib +3 -0
Stress identification NLP
ADDED
Binary file (257 kB). View file
|
|
Stress.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Untitled.ipynb
ADDED
@@ -0,0 +1,1220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "c6c16352",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
+
"id": "9364c142",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"df = pd.read_csv('stress.csv')"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 3,
|
26 |
+
"id": "d74d44fa",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"text/html": [
|
32 |
+
"<div>\n",
|
33 |
+
"<style scoped>\n",
|
34 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
35 |
+
" vertical-align: middle;\n",
|
36 |
+
" }\n",
|
37 |
+
"\n",
|
38 |
+
" .dataframe tbody tr th {\n",
|
39 |
+
" vertical-align: top;\n",
|
40 |
+
" }\n",
|
41 |
+
"\n",
|
42 |
+
" .dataframe thead th {\n",
|
43 |
+
" text-align: right;\n",
|
44 |
+
" }\n",
|
45 |
+
"</style>\n",
|
46 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
47 |
+
" <thead>\n",
|
48 |
+
" <tr style=\"text-align: right;\">\n",
|
49 |
+
" <th></th>\n",
|
50 |
+
" <th>subreddit</th>\n",
|
51 |
+
" <th>post_id</th>\n",
|
52 |
+
" <th>sentence_range</th>\n",
|
53 |
+
" <th>text</th>\n",
|
54 |
+
" <th>label</th>\n",
|
55 |
+
" <th>confidence</th>\n",
|
56 |
+
" <th>social_timestamp</th>\n",
|
57 |
+
" </tr>\n",
|
58 |
+
" </thead>\n",
|
59 |
+
" <tbody>\n",
|
60 |
+
" <tr>\n",
|
61 |
+
" <th>0</th>\n",
|
62 |
+
" <td>ptsd</td>\n",
|
63 |
+
" <td>8601tu</td>\n",
|
64 |
+
" <td>(15, 20)</td>\n",
|
65 |
+
" <td>He said he had not felt that way before, sugge...</td>\n",
|
66 |
+
" <td>1</td>\n",
|
67 |
+
" <td>0.8</td>\n",
|
68 |
+
" <td>1521614353</td>\n",
|
69 |
+
" </tr>\n",
|
70 |
+
" <tr>\n",
|
71 |
+
" <th>1</th>\n",
|
72 |
+
" <td>assistance</td>\n",
|
73 |
+
" <td>8lbrx9</td>\n",
|
74 |
+
" <td>(0, 5)</td>\n",
|
75 |
+
" <td>Hey there r/assistance, Not sure if this is th...</td>\n",
|
76 |
+
" <td>0</td>\n",
|
77 |
+
" <td>1.0</td>\n",
|
78 |
+
" <td>1527009817</td>\n",
|
79 |
+
" </tr>\n",
|
80 |
+
" <tr>\n",
|
81 |
+
" <th>2</th>\n",
|
82 |
+
" <td>ptsd</td>\n",
|
83 |
+
" <td>9ch1zh</td>\n",
|
84 |
+
" <td>(15, 20)</td>\n",
|
85 |
+
" <td>My mom then hit me with the newspaper and it s...</td>\n",
|
86 |
+
" <td>1</td>\n",
|
87 |
+
" <td>0.8</td>\n",
|
88 |
+
" <td>1535935605</td>\n",
|
89 |
+
" </tr>\n",
|
90 |
+
" </tbody>\n",
|
91 |
+
"</table>\n",
|
92 |
+
"</div>"
|
93 |
+
],
|
94 |
+
"text/plain": [
|
95 |
+
" subreddit post_id sentence_range \n",
|
96 |
+
"0 ptsd 8601tu (15, 20) \\\n",
|
97 |
+
"1 assistance 8lbrx9 (0, 5) \n",
|
98 |
+
"2 ptsd 9ch1zh (15, 20) \n",
|
99 |
+
"\n",
|
100 |
+
" text label confidence \n",
|
101 |
+
"0 He said he had not felt that way before, sugge... 1 0.8 \\\n",
|
102 |
+
"1 Hey there r/assistance, Not sure if this is th... 0 1.0 \n",
|
103 |
+
"2 My mom then hit me with the newspaper and it s... 1 0.8 \n",
|
104 |
+
"\n",
|
105 |
+
" social_timestamp \n",
|
106 |
+
"0 1521614353 \n",
|
107 |
+
"1 1527009817 \n",
|
108 |
+
"2 1535935605 "
|
109 |
+
]
|
110 |
+
},
|
111 |
+
"execution_count": 3,
|
112 |
+
"metadata": {},
|
113 |
+
"output_type": "execute_result"
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"source": [
|
117 |
+
"df.head(3)"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": 4,
|
123 |
+
"id": "a9ab0f47",
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [
|
126 |
+
{
|
127 |
+
"data": {
|
128 |
+
"text/plain": [
|
129 |
+
"'He said he had not felt that way before, suggeted I go rest and so ..TRIGGER AHEAD IF YOUI\\'RE A HYPOCONDRIAC LIKE ME: i decide to look up \"feelings of doom\" in hopes of maybe getting sucked into some rabbit hole of ludicrous conspiracy, a stupid \"are you psychic\" test or new age b.s., something I could even laugh at down the road. No, I ended up reading that this sense of doom can be indicative of various health ailments; one of which I am prone to.. So on top of my \"doom\" to my gloom..I am now f\\'n worried about my heart. I do happen to have a physical in 48 hours.'"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
"execution_count": 4,
|
133 |
+
"metadata": {},
|
134 |
+
"output_type": "execute_result"
|
135 |
+
}
|
136 |
+
],
|
137 |
+
"source": [
|
138 |
+
"df['text'][0]"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": 5,
|
144 |
+
"id": "cddf65aa",
|
145 |
+
"metadata": {},
|
146 |
+
"outputs": [],
|
147 |
+
"source": [
|
148 |
+
"import nltk\n",
|
149 |
+
"import re\n",
|
150 |
+
"from urllib.parse import urlparse\n",
|
151 |
+
"from spacy import load\n",
|
152 |
+
"from nltk.stem import WordNetLemmatizer\n",
|
153 |
+
"from nltk.corpus import stopwords\n",
|
154 |
+
"from nltk.tokenize import word_tokenize"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": 6,
|
160 |
+
"id": "183c5b14",
|
161 |
+
"metadata": {},
|
162 |
+
"outputs": [
|
163 |
+
{
|
164 |
+
"name": "stdout",
|
165 |
+
"output_type": "stream",
|
166 |
+
"text": [
|
167 |
+
"cp: /usr/share/nltk_data/corpora/wordnet2022: No such file or directory\r\n"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"name": "stderr",
|
172 |
+
"output_type": "stream",
|
173 |
+
"text": [
|
174 |
+
"[nltk_data] Downloading package omw-1.4 to\n",
|
175 |
+
"[nltk_data] /Users/nileshpal/nltk_data...\n",
|
176 |
+
"[nltk_data] Package omw-1.4 is already up-to-date!\n",
|
177 |
+
"[nltk_data] Downloading package wordnet to\n",
|
178 |
+
"[nltk_data] /Users/nileshpal/nltk_data...\n",
|
179 |
+
"[nltk_data] Package wordnet is already up-to-date!\n",
|
180 |
+
"[nltk_data] Downloading package wordnet2022 to\n",
|
181 |
+
"[nltk_data] /Users/nileshpal/nltk_data...\n",
|
182 |
+
"[nltk_data] Package wordnet2022 is already up-to-date!\n",
|
183 |
+
"[nltk_data] Downloading package punkt to /Users/nileshpal/nltk_data...\n",
|
184 |
+
"[nltk_data] Package punkt is already up-to-date!\n",
|
185 |
+
"[nltk_data] Downloading package stopwords to\n",
|
186 |
+
"[nltk_data] /Users/nileshpal/nltk_data...\n",
|
187 |
+
"[nltk_data] Package stopwords is already up-to-date!\n"
|
188 |
+
]
|
189 |
+
}
|
190 |
+
],
|
191 |
+
"source": [
|
192 |
+
"nltk.download('omw-1.4')\n",
|
193 |
+
"nltk.download('wordnet') \n",
|
194 |
+
"nltk.download('wordnet2022')\n",
|
195 |
+
"nltk.download('punkt')\n",
|
196 |
+
"nltk.download('stopwords')\n",
|
197 |
+
"! cp -rf /usr/share/nltk_data/corpora/wordnet2022 /usr/share/nltk_data/corpora/wordnet"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"cell_type": "code",
|
202 |
+
"execution_count": 7,
|
203 |
+
"id": "473ea714",
|
204 |
+
"metadata": {},
|
205 |
+
"outputs": [
|
206 |
+
{
|
207 |
+
"name": "stdout",
|
208 |
+
"output_type": "stream",
|
209 |
+
"text": [
|
210 |
+
"['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', \"you're\", \"you've\", \"you'll\", \"you'd\", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', \"she's\", 'her', 'hers', 'herself', 'it', \"it's\", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', \"that'll\", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', \"don't\", 'should', \"should've\", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', \"aren't\", 'couldn', \"couldn't\", 'didn', \"didn't\", 'doesn', \"doesn't\", 'hadn', \"hadn't\", 'hasn', \"hasn't\", 'haven', \"haven't\", 'isn', \"isn't\", 'ma', 'mightn', \"mightn't\", 'mustn', \"mustn't\", 'needn', \"needn't\", 'shan', \"shan't\", 'shouldn', \"shouldn't\", 'wasn', \"wasn't\", 'weren', \"weren't\", 'won', \"won't\", 'wouldn', \"wouldn't\"]\n"
|
211 |
+
]
|
212 |
+
}
|
213 |
+
],
|
214 |
+
"source": [
|
215 |
+
"lemmatizer = WordNetLemmatizer()\n",
|
216 |
+
"stop_words = list(stopwords.words('english'))\n",
|
217 |
+
"print(stop_words)"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": 8,
|
223 |
+
"id": "d119482b",
|
224 |
+
"metadata": {},
|
225 |
+
"outputs": [],
|
226 |
+
"source": [
|
227 |
+
"def textPocess(sent):\n",
|
228 |
+
" try:\n",
|
229 |
+
" sent = re.sub('[][)(]',' ',sent)\n",
|
230 |
+
"\n",
|
231 |
+
" sent = [word for word in sent.split() if not urlparse(word).scheme]\n",
|
232 |
+
" sent = ' '.join(sent)\n",
|
233 |
+
"\n",
|
234 |
+
"\n",
|
235 |
+
" sent = re.sub(r'\\@\\w+','',sent)\n",
|
236 |
+
"\n",
|
237 |
+
"\n",
|
238 |
+
" sent = re.sub(re.compile(\"<.*?>\"),'',sent)\n",
|
239 |
+
"\n",
|
240 |
+
" sent = re.sub(\"[^A-Za-z0-9]\",' ',sent)\n",
|
241 |
+
"\n",
|
242 |
+
" sent = sent.lower()\n",
|
243 |
+
" \n",
|
244 |
+
" sent = [word.strip() for word in sent.split()]\n",
|
245 |
+
" sent = ' '.join(sent)\n",
|
246 |
+
"\n",
|
247 |
+
" tokens = word_tokenize(sent)\n",
|
248 |
+
" \n",
|
249 |
+
" for word in tokens:\n",
|
250 |
+
" if word in stop_words:\n",
|
251 |
+
" tokens.remove(word)\n",
|
252 |
+
" \n",
|
253 |
+
" sent = [lemmatizer.lemmatize(word) for word in tokens]\n",
|
254 |
+
" sent = ' '.join(sent)\n",
|
255 |
+
" return sent\n",
|
256 |
+
" \n",
|
257 |
+
" except Exception as ex:\n",
|
258 |
+
" print(sent,\"\\n\")\n",
|
259 |
+
" print(\"Error \",ex)"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": 9,
|
265 |
+
"id": "f2b42f59",
|
266 |
+
"metadata": {},
|
267 |
+
"outputs": [],
|
268 |
+
"source": [
|
269 |
+
"df['processed_text'] = df['text'].apply(lambda text: textPocess(text))"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 10,
|
275 |
+
"id": "074cb312",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [],
|
278 |
+
"source": [
|
279 |
+
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
280 |
+
"MIN_DF = 1 "
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": 11,
|
286 |
+
"id": "39f0bd84",
|
287 |
+
"metadata": {},
|
288 |
+
"outputs": [
|
289 |
+
{
|
290 |
+
"data": {
|
291 |
+
"text/plain": [
|
292 |
+
"array([[0, 0, 0, ..., 0, 0, 0],\n",
|
293 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
294 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
295 |
+
" ...,\n",
|
296 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
297 |
+
" [0, 0, 0, ..., 0, 0, 0],\n",
|
298 |
+
" [0, 0, 0, ..., 0, 0, 0]])"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
"execution_count": 11,
|
302 |
+
"metadata": {},
|
303 |
+
"output_type": "execute_result"
|
304 |
+
}
|
305 |
+
],
|
306 |
+
"source": [
|
307 |
+
"from sklearn.feature_extraction.text import CountVectorizer\n",
|
308 |
+
"cv = CountVectorizer(min_df=MIN_DF)\n",
|
309 |
+
"cv_df = cv.fit_transform(df['processed_text'])\n",
|
310 |
+
"cv_df.toarray()"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"cell_type": "code",
|
315 |
+
"execution_count": 12,
|
316 |
+
"id": "3c43aa15",
|
317 |
+
"metadata": {},
|
318 |
+
"outputs": [
|
319 |
+
{
|
320 |
+
"data": {
|
321 |
+
"text/html": [
|
322 |
+
"<div>\n",
|
323 |
+
"<style scoped>\n",
|
324 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
325 |
+
" vertical-align: middle;\n",
|
326 |
+
" }\n",
|
327 |
+
"\n",
|
328 |
+
" .dataframe tbody tr th {\n",
|
329 |
+
" vertical-align: top;\n",
|
330 |
+
" }\n",
|
331 |
+
"\n",
|
332 |
+
" .dataframe thead th {\n",
|
333 |
+
" text-align: right;\n",
|
334 |
+
" }\n",
|
335 |
+
"</style>\n",
|
336 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
337 |
+
" <thead>\n",
|
338 |
+
" <tr style=\"text-align: right;\">\n",
|
339 |
+
" <th></th>\n",
|
340 |
+
" <th>00</th>\n",
|
341 |
+
" <th>000</th>\n",
|
342 |
+
" <th>02</th>\n",
|
343 |
+
" <th>06</th>\n",
|
344 |
+
" <th>10</th>\n",
|
345 |
+
" <th>100</th>\n",
|
346 |
+
" <th>1000</th>\n",
|
347 |
+
" <th>100kg</th>\n",
|
348 |
+
" <th>100mg</th>\n",
|
349 |
+
" <th>100x</th>\n",
|
350 |
+
" <th>...</th>\n",
|
351 |
+
" <th>zines</th>\n",
|
352 |
+
" <th>zinsser</th>\n",
|
353 |
+
" <th>zip</th>\n",
|
354 |
+
" <th>zofran</th>\n",
|
355 |
+
" <th>zoloft</th>\n",
|
356 |
+
" <th>zombie</th>\n",
|
357 |
+
" <th>zone</th>\n",
|
358 |
+
" <th>zoo</th>\n",
|
359 |
+
" <th>zuko</th>\n",
|
360 |
+
" <th>zumba</th>\n",
|
361 |
+
" </tr>\n",
|
362 |
+
" </thead>\n",
|
363 |
+
" <tbody>\n",
|
364 |
+
" <tr>\n",
|
365 |
+
" <th>0</th>\n",
|
366 |
+
" <td>0</td>\n",
|
367 |
+
" <td>0</td>\n",
|
368 |
+
" <td>0</td>\n",
|
369 |
+
" <td>0</td>\n",
|
370 |
+
" <td>0</td>\n",
|
371 |
+
" <td>0</td>\n",
|
372 |
+
" <td>0</td>\n",
|
373 |
+
" <td>0</td>\n",
|
374 |
+
" <td>0</td>\n",
|
375 |
+
" <td>0</td>\n",
|
376 |
+
" <td>...</td>\n",
|
377 |
+
" <td>0</td>\n",
|
378 |
+
" <td>0</td>\n",
|
379 |
+
" <td>0</td>\n",
|
380 |
+
" <td>0</td>\n",
|
381 |
+
" <td>0</td>\n",
|
382 |
+
" <td>0</td>\n",
|
383 |
+
" <td>0</td>\n",
|
384 |
+
" <td>0</td>\n",
|
385 |
+
" <td>0</td>\n",
|
386 |
+
" <td>0</td>\n",
|
387 |
+
" </tr>\n",
|
388 |
+
" <tr>\n",
|
389 |
+
" <th>1</th>\n",
|
390 |
+
" <td>0</td>\n",
|
391 |
+
" <td>0</td>\n",
|
392 |
+
" <td>0</td>\n",
|
393 |
+
" <td>0</td>\n",
|
394 |
+
" <td>0</td>\n",
|
395 |
+
" <td>0</td>\n",
|
396 |
+
" <td>0</td>\n",
|
397 |
+
" <td>0</td>\n",
|
398 |
+
" <td>0</td>\n",
|
399 |
+
" <td>0</td>\n",
|
400 |
+
" <td>...</td>\n",
|
401 |
+
" <td>0</td>\n",
|
402 |
+
" <td>0</td>\n",
|
403 |
+
" <td>0</td>\n",
|
404 |
+
" <td>0</td>\n",
|
405 |
+
" <td>0</td>\n",
|
406 |
+
" <td>0</td>\n",
|
407 |
+
" <td>0</td>\n",
|
408 |
+
" <td>0</td>\n",
|
409 |
+
" <td>0</td>\n",
|
410 |
+
" <td>0</td>\n",
|
411 |
+
" </tr>\n",
|
412 |
+
" <tr>\n",
|
413 |
+
" <th>2</th>\n",
|
414 |
+
" <td>0</td>\n",
|
415 |
+
" <td>0</td>\n",
|
416 |
+
" <td>0</td>\n",
|
417 |
+
" <td>0</td>\n",
|
418 |
+
" <td>0</td>\n",
|
419 |
+
" <td>0</td>\n",
|
420 |
+
" <td>0</td>\n",
|
421 |
+
" <td>0</td>\n",
|
422 |
+
" <td>0</td>\n",
|
423 |
+
" <td>0</td>\n",
|
424 |
+
" <td>...</td>\n",
|
425 |
+
" <td>0</td>\n",
|
426 |
+
" <td>0</td>\n",
|
427 |
+
" <td>0</td>\n",
|
428 |
+
" <td>0</td>\n",
|
429 |
+
" <td>0</td>\n",
|
430 |
+
" <td>0</td>\n",
|
431 |
+
" <td>0</td>\n",
|
432 |
+
" <td>0</td>\n",
|
433 |
+
" <td>0</td>\n",
|
434 |
+
" <td>0</td>\n",
|
435 |
+
" </tr>\n",
|
436 |
+
" </tbody>\n",
|
437 |
+
"</table>\n",
|
438 |
+
"<p>3 rows × 10267 columns</p>\n",
|
439 |
+
"</div>"
|
440 |
+
],
|
441 |
+
"text/plain": [
|
442 |
+
" 00 000 02 06 10 100 1000 100kg 100mg 100x ... zines zinsser \n",
|
443 |
+
"0 0 0 0 0 0 0 0 0 0 0 ... 0 0 \\\n",
|
444 |
+
"1 0 0 0 0 0 0 0 0 0 0 ... 0 0 \n",
|
445 |
+
"2 0 0 0 0 0 0 0 0 0 0 ... 0 0 \n",
|
446 |
+
"\n",
|
447 |
+
" zip zofran zoloft zombie zone zoo zuko zumba \n",
|
448 |
+
"0 0 0 0 0 0 0 0 0 \n",
|
449 |
+
"1 0 0 0 0 0 0 0 0 \n",
|
450 |
+
"2 0 0 0 0 0 0 0 0 \n",
|
451 |
+
"\n",
|
452 |
+
"[3 rows x 10267 columns]"
|
453 |
+
]
|
454 |
+
},
|
455 |
+
"execution_count": 12,
|
456 |
+
"metadata": {},
|
457 |
+
"output_type": "execute_result"
|
458 |
+
}
|
459 |
+
],
|
460 |
+
"source": [
|
461 |
+
"cv_df = pd.DataFrame(cv_df.toarray(),columns=cv.get_feature_names_out())\n",
|
462 |
+
"cv_df.head(3)"
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "code",
|
467 |
+
"execution_count": 13,
|
468 |
+
"id": "10526ca5",
|
469 |
+
"metadata": {},
|
470 |
+
"outputs": [
|
471 |
+
{
|
472 |
+
"data": {
|
473 |
+
"text/plain": [
|
474 |
+
"array([[0., 0., 0., ..., 0., 0., 0.],\n",
|
475 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
476 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
477 |
+
" ...,\n",
|
478 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
479 |
+
" [0., 0., 0., ..., 0., 0., 0.],\n",
|
480 |
+
" [0., 0., 0., ..., 0., 0., 0.]])"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
"execution_count": 13,
|
484 |
+
"metadata": {},
|
485 |
+
"output_type": "execute_result"
|
486 |
+
}
|
487 |
+
],
|
488 |
+
"source": [
|
489 |
+
"tf = TfidfVectorizer(min_df=MIN_DF)\n",
|
490 |
+
"tf_df = tf.fit_transform(df['processed_text'])\n",
|
491 |
+
"tf_df.toarray()"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"cell_type": "code",
|
496 |
+
"execution_count": 14,
|
497 |
+
"id": "2de0d172",
|
498 |
+
"metadata": {},
|
499 |
+
"outputs": [
|
500 |
+
{
|
501 |
+
"data": {
|
502 |
+
"text/plain": [
|
503 |
+
"['tfidf_vectorizer.joblib']"
|
504 |
+
]
|
505 |
+
},
|
506 |
+
"execution_count": 14,
|
507 |
+
"metadata": {},
|
508 |
+
"output_type": "execute_result"
|
509 |
+
}
|
510 |
+
],
|
511 |
+
"source": [
|
512 |
+
"import joblib\n",
|
513 |
+
"joblib.dump(tf, 'tfidf_vectorizer.joblib')"
|
514 |
+
]
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"cell_type": "code",
|
518 |
+
"execution_count": 15,
|
519 |
+
"id": "869aefb8",
|
520 |
+
"metadata": {},
|
521 |
+
"outputs": [
|
522 |
+
{
|
523 |
+
"data": {
|
524 |
+
"text/html": [
|
525 |
+
"<div>\n",
|
526 |
+
"<style scoped>\n",
|
527 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
528 |
+
" vertical-align: middle;\n",
|
529 |
+
" }\n",
|
530 |
+
"\n",
|
531 |
+
" .dataframe tbody tr th {\n",
|
532 |
+
" vertical-align: top;\n",
|
533 |
+
" }\n",
|
534 |
+
"\n",
|
535 |
+
" .dataframe thead th {\n",
|
536 |
+
" text-align: right;\n",
|
537 |
+
" }\n",
|
538 |
+
"</style>\n",
|
539 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
540 |
+
" <thead>\n",
|
541 |
+
" <tr style=\"text-align: right;\">\n",
|
542 |
+
" <th></th>\n",
|
543 |
+
" <th>00</th>\n",
|
544 |
+
" <th>000</th>\n",
|
545 |
+
" <th>02</th>\n",
|
546 |
+
" <th>06</th>\n",
|
547 |
+
" <th>10</th>\n",
|
548 |
+
" <th>100</th>\n",
|
549 |
+
" <th>1000</th>\n",
|
550 |
+
" <th>100kg</th>\n",
|
551 |
+
" <th>100mg</th>\n",
|
552 |
+
" <th>100x</th>\n",
|
553 |
+
" <th>...</th>\n",
|
554 |
+
" <th>zines</th>\n",
|
555 |
+
" <th>zinsser</th>\n",
|
556 |
+
" <th>zip</th>\n",
|
557 |
+
" <th>zofran</th>\n",
|
558 |
+
" <th>zoloft</th>\n",
|
559 |
+
" <th>zombie</th>\n",
|
560 |
+
" <th>zone</th>\n",
|
561 |
+
" <th>zoo</th>\n",
|
562 |
+
" <th>zuko</th>\n",
|
563 |
+
" <th>zumba</th>\n",
|
564 |
+
" </tr>\n",
|
565 |
+
" </thead>\n",
|
566 |
+
" <tbody>\n",
|
567 |
+
" <tr>\n",
|
568 |
+
" <th>0</th>\n",
|
569 |
+
" <td>0.0</td>\n",
|
570 |
+
" <td>0.0</td>\n",
|
571 |
+
" <td>0.0</td>\n",
|
572 |
+
" <td>0.0</td>\n",
|
573 |
+
" <td>0.0</td>\n",
|
574 |
+
" <td>0.0</td>\n",
|
575 |
+
" <td>0.0</td>\n",
|
576 |
+
" <td>0.0</td>\n",
|
577 |
+
" <td>0.0</td>\n",
|
578 |
+
" <td>0.0</td>\n",
|
579 |
+
" <td>...</td>\n",
|
580 |
+
" <td>0.0</td>\n",
|
581 |
+
" <td>0.0</td>\n",
|
582 |
+
" <td>0.0</td>\n",
|
583 |
+
" <td>0.0</td>\n",
|
584 |
+
" <td>0.0</td>\n",
|
585 |
+
" <td>0.0</td>\n",
|
586 |
+
" <td>0.0</td>\n",
|
587 |
+
" <td>0.0</td>\n",
|
588 |
+
" <td>0.0</td>\n",
|
589 |
+
" <td>0.0</td>\n",
|
590 |
+
" </tr>\n",
|
591 |
+
" <tr>\n",
|
592 |
+
" <th>1</th>\n",
|
593 |
+
" <td>0.0</td>\n",
|
594 |
+
" <td>0.0</td>\n",
|
595 |
+
" <td>0.0</td>\n",
|
596 |
+
" <td>0.0</td>\n",
|
597 |
+
" <td>0.0</td>\n",
|
598 |
+
" <td>0.0</td>\n",
|
599 |
+
" <td>0.0</td>\n",
|
600 |
+
" <td>0.0</td>\n",
|
601 |
+
" <td>0.0</td>\n",
|
602 |
+
" <td>0.0</td>\n",
|
603 |
+
" <td>...</td>\n",
|
604 |
+
" <td>0.0</td>\n",
|
605 |
+
" <td>0.0</td>\n",
|
606 |
+
" <td>0.0</td>\n",
|
607 |
+
" <td>0.0</td>\n",
|
608 |
+
" <td>0.0</td>\n",
|
609 |
+
" <td>0.0</td>\n",
|
610 |
+
" <td>0.0</td>\n",
|
611 |
+
" <td>0.0</td>\n",
|
612 |
+
" <td>0.0</td>\n",
|
613 |
+
" <td>0.0</td>\n",
|
614 |
+
" </tr>\n",
|
615 |
+
" <tr>\n",
|
616 |
+
" <th>2</th>\n",
|
617 |
+
" <td>0.0</td>\n",
|
618 |
+
" <td>0.0</td>\n",
|
619 |
+
" <td>0.0</td>\n",
|
620 |
+
" <td>0.0</td>\n",
|
621 |
+
" <td>0.0</td>\n",
|
622 |
+
" <td>0.0</td>\n",
|
623 |
+
" <td>0.0</td>\n",
|
624 |
+
" <td>0.0</td>\n",
|
625 |
+
" <td>0.0</td>\n",
|
626 |
+
" <td>0.0</td>\n",
|
627 |
+
" <td>...</td>\n",
|
628 |
+
" <td>0.0</td>\n",
|
629 |
+
" <td>0.0</td>\n",
|
630 |
+
" <td>0.0</td>\n",
|
631 |
+
" <td>0.0</td>\n",
|
632 |
+
" <td>0.0</td>\n",
|
633 |
+
" <td>0.0</td>\n",
|
634 |
+
" <td>0.0</td>\n",
|
635 |
+
" <td>0.0</td>\n",
|
636 |
+
" <td>0.0</td>\n",
|
637 |
+
" <td>0.0</td>\n",
|
638 |
+
" </tr>\n",
|
639 |
+
" </tbody>\n",
|
640 |
+
"</table>\n",
|
641 |
+
"<p>3 rows × 10267 columns</p>\n",
|
642 |
+
"</div>"
|
643 |
+
],
|
644 |
+
"text/plain": [
|
645 |
+
" 00 000 02 06 10 100 1000 100kg 100mg 100x ... zines \n",
|
646 |
+
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 \\\n",
|
647 |
+
"1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 \n",
|
648 |
+
"2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 \n",
|
649 |
+
"\n",
|
650 |
+
" zinsser zip zofran zoloft zombie zone zoo zuko zumba \n",
|
651 |
+
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
|
652 |
+
"1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
|
653 |
+
"2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
|
654 |
+
"\n",
|
655 |
+
"[3 rows x 10267 columns]"
|
656 |
+
]
|
657 |
+
},
|
658 |
+
"execution_count": 15,
|
659 |
+
"metadata": {},
|
660 |
+
"output_type": "execute_result"
|
661 |
+
}
|
662 |
+
],
|
663 |
+
"source": [
|
664 |
+
"tf_df = pd.DataFrame(tf_df.toarray(),columns=tf.get_feature_names_out())\n",
|
665 |
+
"tf_df.head(3)"
|
666 |
+
]
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"cell_type": "code",
|
670 |
+
"execution_count": 16,
|
671 |
+
"id": "95bddea7",
|
672 |
+
"metadata": {},
|
673 |
+
"outputs": [
|
674 |
+
{
|
675 |
+
"data": {
|
676 |
+
"text/html": [
|
677 |
+
"<div>\n",
|
678 |
+
"<style scoped>\n",
|
679 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
680 |
+
" vertical-align: middle;\n",
|
681 |
+
" }\n",
|
682 |
+
"\n",
|
683 |
+
" .dataframe tbody tr th {\n",
|
684 |
+
" vertical-align: top;\n",
|
685 |
+
" }\n",
|
686 |
+
"\n",
|
687 |
+
" .dataframe thead th {\n",
|
688 |
+
" text-align: right;\n",
|
689 |
+
" }\n",
|
690 |
+
"</style>\n",
|
691 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
692 |
+
" <thead>\n",
|
693 |
+
" <tr style=\"text-align: right;\">\n",
|
694 |
+
" <th></th>\n",
|
695 |
+
" <th>00</th>\n",
|
696 |
+
" <th>000</th>\n",
|
697 |
+
" <th>02</th>\n",
|
698 |
+
" <th>06</th>\n",
|
699 |
+
" <th>10</th>\n",
|
700 |
+
" <th>100</th>\n",
|
701 |
+
" <th>1000</th>\n",
|
702 |
+
" <th>100kg</th>\n",
|
703 |
+
" <th>100mg</th>\n",
|
704 |
+
" <th>100x</th>\n",
|
705 |
+
" <th>...</th>\n",
|
706 |
+
" <th>zines</th>\n",
|
707 |
+
" <th>zinsser</th>\n",
|
708 |
+
" <th>zip</th>\n",
|
709 |
+
" <th>zofran</th>\n",
|
710 |
+
" <th>zoloft</th>\n",
|
711 |
+
" <th>zombie</th>\n",
|
712 |
+
" <th>zone</th>\n",
|
713 |
+
" <th>zoo</th>\n",
|
714 |
+
" <th>zuko</th>\n",
|
715 |
+
" <th>zumba</th>\n",
|
716 |
+
" </tr>\n",
|
717 |
+
" </thead>\n",
|
718 |
+
" <tbody>\n",
|
719 |
+
" <tr>\n",
|
720 |
+
" <th>count</th>\n",
|
721 |
+
" <td>2838.000000</td>\n",
|
722 |
+
" <td>2838.000000</td>\n",
|
723 |
+
" <td>2838.000000</td>\n",
|
724 |
+
" <td>2838.000000</td>\n",
|
725 |
+
" <td>2838.000000</td>\n",
|
726 |
+
" <td>2838.000000</td>\n",
|
727 |
+
" <td>2838.000000</td>\n",
|
728 |
+
" <td>2838.000000</td>\n",
|
729 |
+
" <td>2838.000000</td>\n",
|
730 |
+
" <td>2838.000000</td>\n",
|
731 |
+
" <td>...</td>\n",
|
732 |
+
" <td>2838.000000</td>\n",
|
733 |
+
" <td>2838.000000</td>\n",
|
734 |
+
" <td>2838.000000</td>\n",
|
735 |
+
" <td>2838.000000</td>\n",
|
736 |
+
" <td>2838.000000</td>\n",
|
737 |
+
" <td>2838.000000</td>\n",
|
738 |
+
" <td>2838.000000</td>\n",
|
739 |
+
" <td>2838.000000</td>\n",
|
740 |
+
" <td>2838.000000</td>\n",
|
741 |
+
" <td>2838.000000</td>\n",
|
742 |
+
" </tr>\n",
|
743 |
+
" <tr>\n",
|
744 |
+
" <th>mean</th>\n",
|
745 |
+
" <td>0.000452</td>\n",
|
746 |
+
" <td>0.000548</td>\n",
|
747 |
+
" <td>0.000109</td>\n",
|
748 |
+
" <td>0.000069</td>\n",
|
749 |
+
" <td>0.003342</td>\n",
|
750 |
+
" <td>0.001784</td>\n",
|
751 |
+
" <td>0.000576</td>\n",
|
752 |
+
" <td>0.000106</td>\n",
|
753 |
+
" <td>0.000115</td>\n",
|
754 |
+
" <td>0.000067</td>\n",
|
755 |
+
" <td>...</td>\n",
|
756 |
+
" <td>0.000078</td>\n",
|
757 |
+
" <td>0.000072</td>\n",
|
758 |
+
" <td>0.000204</td>\n",
|
759 |
+
" <td>0.000078</td>\n",
|
760 |
+
" <td>0.000715</td>\n",
|
761 |
+
" <td>0.000126</td>\n",
|
762 |
+
" <td>0.000245</td>\n",
|
763 |
+
" <td>0.000089</td>\n",
|
764 |
+
" <td>0.000054</td>\n",
|
765 |
+
" <td>0.000040</td>\n",
|
766 |
+
" </tr>\n",
|
767 |
+
" <tr>\n",
|
768 |
+
" <th>std</th>\n",
|
769 |
+
" <td>0.011158</td>\n",
|
770 |
+
" <td>0.009998</td>\n",
|
771 |
+
" <td>0.005801</td>\n",
|
772 |
+
" <td>0.003671</td>\n",
|
773 |
+
" <td>0.021379</td>\n",
|
774 |
+
" <td>0.017215</td>\n",
|
775 |
+
" <td>0.011156</td>\n",
|
776 |
+
" <td>0.005624</td>\n",
|
777 |
+
" <td>0.004534</td>\n",
|
778 |
+
" <td>0.003573</td>\n",
|
779 |
+
" <td>...</td>\n",
|
780 |
+
" <td>0.004145</td>\n",
|
781 |
+
" <td>0.003841</td>\n",
|
782 |
+
" <td>0.007786</td>\n",
|
783 |
+
" <td>0.004157</td>\n",
|
784 |
+
" <td>0.011797</td>\n",
|
785 |
+
" <td>0.004733</td>\n",
|
786 |
+
" <td>0.006851</td>\n",
|
787 |
+
" <td>0.004754</td>\n",
|
788 |
+
" <td>0.002873</td>\n",
|
789 |
+
" <td>0.002105</td>\n",
|
790 |
+
" </tr>\n",
|
791 |
+
" <tr>\n",
|
792 |
+
" <th>min</th>\n",
|
793 |
+
" <td>0.000000</td>\n",
|
794 |
+
" <td>0.000000</td>\n",
|
795 |
+
" <td>0.000000</td>\n",
|
796 |
+
" <td>0.000000</td>\n",
|
797 |
+
" <td>0.000000</td>\n",
|
798 |
+
" <td>0.000000</td>\n",
|
799 |
+
" <td>0.000000</td>\n",
|
800 |
+
" <td>0.000000</td>\n",
|
801 |
+
" <td>0.000000</td>\n",
|
802 |
+
" <td>0.000000</td>\n",
|
803 |
+
" <td>...</td>\n",
|
804 |
+
" <td>0.000000</td>\n",
|
805 |
+
" <td>0.000000</td>\n",
|
806 |
+
" <td>0.000000</td>\n",
|
807 |
+
" <td>0.000000</td>\n",
|
808 |
+
" <td>0.000000</td>\n",
|
809 |
+
" <td>0.000000</td>\n",
|
810 |
+
" <td>0.000000</td>\n",
|
811 |
+
" <td>0.000000</td>\n",
|
812 |
+
" <td>0.000000</td>\n",
|
813 |
+
" <td>0.000000</td>\n",
|
814 |
+
" </tr>\n",
|
815 |
+
" <tr>\n",
|
816 |
+
" <th>25%</th>\n",
|
817 |
+
" <td>0.000000</td>\n",
|
818 |
+
" <td>0.000000</td>\n",
|
819 |
+
" <td>0.000000</td>\n",
|
820 |
+
" <td>0.000000</td>\n",
|
821 |
+
" <td>0.000000</td>\n",
|
822 |
+
" <td>0.000000</td>\n",
|
823 |
+
" <td>0.000000</td>\n",
|
824 |
+
" <td>0.000000</td>\n",
|
825 |
+
" <td>0.000000</td>\n",
|
826 |
+
" <td>0.000000</td>\n",
|
827 |
+
" <td>...</td>\n",
|
828 |
+
" <td>0.000000</td>\n",
|
829 |
+
" <td>0.000000</td>\n",
|
830 |
+
" <td>0.000000</td>\n",
|
831 |
+
" <td>0.000000</td>\n",
|
832 |
+
" <td>0.000000</td>\n",
|
833 |
+
" <td>0.000000</td>\n",
|
834 |
+
" <td>0.000000</td>\n",
|
835 |
+
" <td>0.000000</td>\n",
|
836 |
+
" <td>0.000000</td>\n",
|
837 |
+
" <td>0.000000</td>\n",
|
838 |
+
" </tr>\n",
|
839 |
+
" <tr>\n",
|
840 |
+
" <th>50%</th>\n",
|
841 |
+
" <td>0.000000</td>\n",
|
842 |
+
" <td>0.000000</td>\n",
|
843 |
+
" <td>0.000000</td>\n",
|
844 |
+
" <td>0.000000</td>\n",
|
845 |
+
" <td>0.000000</td>\n",
|
846 |
+
" <td>0.000000</td>\n",
|
847 |
+
" <td>0.000000</td>\n",
|
848 |
+
" <td>0.000000</td>\n",
|
849 |
+
" <td>0.000000</td>\n",
|
850 |
+
" <td>0.000000</td>\n",
|
851 |
+
" <td>...</td>\n",
|
852 |
+
" <td>0.000000</td>\n",
|
853 |
+
" <td>0.000000</td>\n",
|
854 |
+
" <td>0.000000</td>\n",
|
855 |
+
" <td>0.000000</td>\n",
|
856 |
+
" <td>0.000000</td>\n",
|
857 |
+
" <td>0.000000</td>\n",
|
858 |
+
" <td>0.000000</td>\n",
|
859 |
+
" <td>0.000000</td>\n",
|
860 |
+
" <td>0.000000</td>\n",
|
861 |
+
" <td>0.000000</td>\n",
|
862 |
+
" </tr>\n",
|
863 |
+
" <tr>\n",
|
864 |
+
" <th>75%</th>\n",
|
865 |
+
" <td>0.000000</td>\n",
|
866 |
+
" <td>0.000000</td>\n",
|
867 |
+
" <td>0.000000</td>\n",
|
868 |
+
" <td>0.000000</td>\n",
|
869 |
+
" <td>0.000000</td>\n",
|
870 |
+
" <td>0.000000</td>\n",
|
871 |
+
" <td>0.000000</td>\n",
|
872 |
+
" <td>0.000000</td>\n",
|
873 |
+
" <td>0.000000</td>\n",
|
874 |
+
" <td>0.000000</td>\n",
|
875 |
+
" <td>...</td>\n",
|
876 |
+
" <td>0.000000</td>\n",
|
877 |
+
" <td>0.000000</td>\n",
|
878 |
+
" <td>0.000000</td>\n",
|
879 |
+
" <td>0.000000</td>\n",
|
880 |
+
" <td>0.000000</td>\n",
|
881 |
+
" <td>0.000000</td>\n",
|
882 |
+
" <td>0.000000</td>\n",
|
883 |
+
" <td>0.000000</td>\n",
|
884 |
+
" <td>0.000000</td>\n",
|
885 |
+
" <td>0.000000</td>\n",
|
886 |
+
" </tr>\n",
|
887 |
+
" <tr>\n",
|
888 |
+
" <th>max</th>\n",
|
889 |
+
" <td>0.348349</td>\n",
|
890 |
+
" <td>0.327600</td>\n",
|
891 |
+
" <td>0.309059</td>\n",
|
892 |
+
" <td>0.195550</td>\n",
|
893 |
+
" <td>0.259369</td>\n",
|
894 |
+
" <td>0.267281</td>\n",
|
895 |
+
" <td>0.310333</td>\n",
|
896 |
+
" <td>0.299611</td>\n",
|
897 |
+
" <td>0.215011</td>\n",
|
898 |
+
" <td>0.190366</td>\n",
|
899 |
+
" <td>...</td>\n",
|
900 |
+
" <td>0.220793</td>\n",
|
901 |
+
" <td>0.204637</td>\n",
|
902 |
+
" <td>0.336077</td>\n",
|
903 |
+
" <td>0.221471</td>\n",
|
904 |
+
" <td>0.306537</td>\n",
|
905 |
+
" <td>0.183347</td>\n",
|
906 |
+
" <td>0.268149</td>\n",
|
907 |
+
" <td>0.253283</td>\n",
|
908 |
+
" <td>0.153067</td>\n",
|
909 |
+
" <td>0.112136</td>\n",
|
910 |
+
" </tr>\n",
|
911 |
+
" </tbody>\n",
|
912 |
+
"</table>\n",
|
913 |
+
"<p>8 rows × 10267 columns</p>\n",
|
914 |
+
"</div>"
|
915 |
+
],
|
916 |
+
"text/plain": [
|
917 |
+
" 00 000 02 06 10 \n",
|
918 |
+
"count 2838.000000 2838.000000 2838.000000 2838.000000 2838.000000 \\\n",
|
919 |
+
"mean 0.000452 0.000548 0.000109 0.000069 0.003342 \n",
|
920 |
+
"std 0.011158 0.009998 0.005801 0.003671 0.021379 \n",
|
921 |
+
"min 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
922 |
+
"25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
923 |
+
"50% 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
924 |
+
"75% 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
925 |
+
"max 0.348349 0.327600 0.309059 0.195550 0.259369 \n",
|
926 |
+
"\n",
|
927 |
+
" 100 1000 100kg 100mg 100x ... \n",
|
928 |
+
"count 2838.000000 2838.000000 2838.000000 2838.000000 2838.000000 ... \\\n",
|
929 |
+
"mean 0.001784 0.000576 0.000106 0.000115 0.000067 ... \n",
|
930 |
+
"std 0.017215 0.011156 0.005624 0.004534 0.003573 ... \n",
|
931 |
+
"min 0.000000 0.000000 0.000000 0.000000 0.000000 ... \n",
|
932 |
+
"25% 0.000000 0.000000 0.000000 0.000000 0.000000 ... \n",
|
933 |
+
"50% 0.000000 0.000000 0.000000 0.000000 0.000000 ... \n",
|
934 |
+
"75% 0.000000 0.000000 0.000000 0.000000 0.000000 ... \n",
|
935 |
+
"max 0.267281 0.310333 0.299611 0.215011 0.190366 ... \n",
|
936 |
+
"\n",
|
937 |
+
" zines zinsser zip zofran zoloft \n",
|
938 |
+
"count 2838.000000 2838.000000 2838.000000 2838.000000 2838.000000 \\\n",
|
939 |
+
"mean 0.000078 0.000072 0.000204 0.000078 0.000715 \n",
|
940 |
+
"std 0.004145 0.003841 0.007786 0.004157 0.011797 \n",
|
941 |
+
"min 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
942 |
+
"25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
943 |
+
"50% 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
944 |
+
"75% 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
945 |
+
"max 0.220793 0.204637 0.336077 0.221471 0.306537 \n",
|
946 |
+
"\n",
|
947 |
+
" zombie zone zoo zuko zumba \n",
|
948 |
+
"count 2838.000000 2838.000000 2838.000000 2838.000000 2838.000000 \n",
|
949 |
+
"mean 0.000126 0.000245 0.000089 0.000054 0.000040 \n",
|
950 |
+
"std 0.004733 0.006851 0.004754 0.002873 0.002105 \n",
|
951 |
+
"min 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
952 |
+
"25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
953 |
+
"50% 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
954 |
+
"75% 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
955 |
+
"max 0.183347 0.268149 0.253283 0.153067 0.112136 \n",
|
956 |
+
"\n",
|
957 |
+
"[8 rows x 10267 columns]"
|
958 |
+
]
|
959 |
+
},
|
960 |
+
"execution_count": 16,
|
961 |
+
"metadata": {},
|
962 |
+
"output_type": "execute_result"
|
963 |
+
}
|
964 |
+
],
|
965 |
+
"source": [
|
966 |
+
"tf_df.describe()\n"
|
967 |
+
]
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"cell_type": "code",
|
971 |
+
"execution_count": 17,
|
972 |
+
"id": "b31e122a",
|
973 |
+
"metadata": {},
|
974 |
+
"outputs": [
|
975 |
+
{
|
976 |
+
"data": {
|
977 |
+
"text/plain": [
|
978 |
+
"(2838, 10267)"
|
979 |
+
]
|
980 |
+
},
|
981 |
+
"execution_count": 17,
|
982 |
+
"metadata": {},
|
983 |
+
"output_type": "execute_result"
|
984 |
+
}
|
985 |
+
],
|
986 |
+
"source": [
|
987 |
+
"tf_df.shape\n"
|
988 |
+
]
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"cell_type": "code",
|
992 |
+
"execution_count": 18,
|
993 |
+
"id": "3fabc741",
|
994 |
+
"metadata": {},
|
995 |
+
"outputs": [],
|
996 |
+
"source": [
|
997 |
+
"from sklearn.model_selection import train_test_split\n",
|
998 |
+
"from sklearn.linear_model import LogisticRegression"
|
999 |
+
]
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"cell_type": "code",
|
1003 |
+
"execution_count": 19,
|
1004 |
+
"id": "2fce3cf9",
|
1005 |
+
"metadata": {},
|
1006 |
+
"outputs": [],
|
1007 |
+
"source": [
|
1008 |
+
"import warnings\n",
|
1009 |
+
"warnings.filterwarnings('ignore')"
|
1010 |
+
]
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"cell_type": "code",
|
1014 |
+
"execution_count": 20,
|
1015 |
+
"id": "a40e9acb",
|
1016 |
+
"metadata": {},
|
1017 |
+
"outputs": [
|
1018 |
+
{
|
1019 |
+
"data": {
|
1020 |
+
"text/plain": [
|
1021 |
+
"((2128, 10267), (710,))"
|
1022 |
+
]
|
1023 |
+
},
|
1024 |
+
"execution_count": 20,
|
1025 |
+
"metadata": {},
|
1026 |
+
"output_type": "execute_result"
|
1027 |
+
}
|
1028 |
+
],
|
1029 |
+
"source": [
|
1030 |
+
"X_train,X_test,y_train,y_test = train_test_split(cv_df,df['label'],stratify=df['label'])\n",
|
1031 |
+
"X_train.shape,y_test.shape"
|
1032 |
+
]
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"cell_type": "code",
|
1036 |
+
"execution_count": 21,
|
1037 |
+
"id": "3b57e047",
|
1038 |
+
"metadata": {},
|
1039 |
+
"outputs": [
|
1040 |
+
{
|
1041 |
+
"data": {
|
1042 |
+
"text/plain": [
|
1043 |
+
"(0.9976503759398496, 0.7619718309859155)"
|
1044 |
+
]
|
1045 |
+
},
|
1046 |
+
"execution_count": 21,
|
1047 |
+
"metadata": {},
|
1048 |
+
"output_type": "execute_result"
|
1049 |
+
}
|
1050 |
+
],
|
1051 |
+
"source": [
|
1052 |
+
"model_lr = LogisticRegression().fit(X_train,y_train)\n",
|
1053 |
+
"model_lr.score(X_train,y_train),model_lr.score(X_test,y_test)"
|
1054 |
+
]
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"cell_type": "code",
|
1058 |
+
"execution_count": 22,
|
1059 |
+
"id": "999b308a",
|
1060 |
+
"metadata": {},
|
1061 |
+
"outputs": [
|
1062 |
+
{
|
1063 |
+
"data": {
|
1064 |
+
"text/plain": [
|
1065 |
+
"((2128, 10267), (710,))"
|
1066 |
+
]
|
1067 |
+
},
|
1068 |
+
"execution_count": 22,
|
1069 |
+
"metadata": {},
|
1070 |
+
"output_type": "execute_result"
|
1071 |
+
}
|
1072 |
+
],
|
1073 |
+
"source": [
|
1074 |
+
"X_train1,X_test1,y_train1,y_test1 = train_test_split(tf_df,df['label'],stratify=df['label'])\n",
|
1075 |
+
"X_train1.shape,y_test1.shape"
|
1076 |
+
]
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"cell_type": "code",
|
1080 |
+
"execution_count": 23,
|
1081 |
+
"id": "0017098c",
|
1082 |
+
"metadata": {},
|
1083 |
+
"outputs": [
|
1084 |
+
{
|
1085 |
+
"data": {
|
1086 |
+
"text/plain": [
|
1087 |
+
"(0.9060150375939849, 0.7788732394366197)"
|
1088 |
+
]
|
1089 |
+
},
|
1090 |
+
"execution_count": 23,
|
1091 |
+
"metadata": {},
|
1092 |
+
"output_type": "execute_result"
|
1093 |
+
}
|
1094 |
+
],
|
1095 |
+
"source": [
|
1096 |
+
"model_lr = LogisticRegression().fit(X_train1,y_train1)\n",
|
1097 |
+
"model_lr.score(X_train1,y_train1),model_lr.score(X_test1,y_test1)"
|
1098 |
+
]
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"cell_type": "code",
|
1102 |
+
"execution_count": 24,
|
1103 |
+
"id": "12ec4b9d",
|
1104 |
+
"metadata": {},
|
1105 |
+
"outputs": [
|
1106 |
+
{
|
1107 |
+
"data": {
|
1108 |
+
"text/plain": [
|
1109 |
+
"0.9002818886539817"
|
1110 |
+
]
|
1111 |
+
},
|
1112 |
+
"execution_count": 24,
|
1113 |
+
"metadata": {},
|
1114 |
+
"output_type": "execute_result"
|
1115 |
+
}
|
1116 |
+
],
|
1117 |
+
"source": [
|
1118 |
+
"model = LogisticRegression().fit(tf_df,df['label'])\n",
|
1119 |
+
"model.score(tf_df,df['label'])"
|
1120 |
+
]
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"cell_type": "code",
|
1124 |
+
"execution_count": 25,
|
1125 |
+
"id": "0555b0d5",
|
1126 |
+
"metadata": {},
|
1127 |
+
"outputs": [],
|
1128 |
+
"source": [
|
1129 |
+
"def predictor(text):\n",
|
1130 |
+
" processed = textPocess(text)\n",
|
1131 |
+
" embedded_words = tf.transform([text])\n",
|
1132 |
+
" res = model.predict(embedded_words)\n",
|
1133 |
+
" if res[0] == 1:\n",
|
1134 |
+
" res = \"this person is in stress\"\n",
|
1135 |
+
" else:\n",
|
1136 |
+
" res = \"this person is not in stress\"\n",
|
1137 |
+
" return res"
|
1138 |
+
]
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"cell_type": "code",
|
1142 |
+
"execution_count": 26,
|
1143 |
+
"id": "2ad39b0f",
|
1144 |
+
"metadata": {},
|
1145 |
+
"outputs": [
|
1146 |
+
{
|
1147 |
+
"data": {
|
1148 |
+
"text/plain": [
|
1149 |
+
"['Stress identification NLP']"
|
1150 |
+
]
|
1151 |
+
},
|
1152 |
+
"execution_count": 26,
|
1153 |
+
"metadata": {},
|
1154 |
+
"output_type": "execute_result"
|
1155 |
+
}
|
1156 |
+
],
|
1157 |
+
"source": [
|
1158 |
+
"import joblib\n",
|
1159 |
+
"joblib.dump(model,\"Stress identification NLP\")"
|
1160 |
+
]
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"cell_type": "code",
|
1164 |
+
"execution_count": 27,
|
1165 |
+
"id": "24f77186",
|
1166 |
+
"metadata": {},
|
1167 |
+
"outputs": [],
|
1168 |
+
"source": [
|
1169 |
+
"text = \"feeling wonderful\""
|
1170 |
+
]
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"cell_type": "code",
|
1174 |
+
"execution_count": 28,
|
1175 |
+
"id": "9d8c2171",
|
1176 |
+
"metadata": {},
|
1177 |
+
"outputs": [
|
1178 |
+
{
|
1179 |
+
"name": "stdout",
|
1180 |
+
"output_type": "stream",
|
1181 |
+
"text": [
|
1182 |
+
"this person is not in stress\n"
|
1183 |
+
]
|
1184 |
+
}
|
1185 |
+
],
|
1186 |
+
"source": [
|
1187 |
+
"print(predictor(text))"
|
1188 |
+
]
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"cell_type": "code",
|
1192 |
+
"execution_count": null,
|
1193 |
+
"id": "5b3b9972",
|
1194 |
+
"metadata": {},
|
1195 |
+
"outputs": [],
|
1196 |
+
"source": []
|
1197 |
+
}
|
1198 |
+
],
|
1199 |
+
"metadata": {
|
1200 |
+
"kernelspec": {
|
1201 |
+
"display_name": "Python 3 (ipykernel)",
|
1202 |
+
"language": "python",
|
1203 |
+
"name": "python3"
|
1204 |
+
},
|
1205 |
+
"language_info": {
|
1206 |
+
"codemirror_mode": {
|
1207 |
+
"name": "ipython",
|
1208 |
+
"version": 3
|
1209 |
+
},
|
1210 |
+
"file_extension": ".py",
|
1211 |
+
"mimetype": "text/x-python",
|
1212 |
+
"name": "python",
|
1213 |
+
"nbconvert_exporter": "python",
|
1214 |
+
"pygments_lexer": "ipython3",
|
1215 |
+
"version": "3.8.16"
|
1216 |
+
}
|
1217 |
+
},
|
1218 |
+
"nbformat": 4,
|
1219 |
+
"nbformat_minor": 5
|
1220 |
+
}
|
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
# Import necessary libraries
|
6 |
+
import re
|
7 |
+
from urllib.parse import urlparse
|
8 |
+
from nltk.tokenize import word_tokenize
|
9 |
+
from nltk.corpus import stopwords
|
10 |
+
from nltk.stem import WordNetLemmatizer
|
11 |
+
|
12 |
+
# Initialize NLTK resources
|
13 |
+
stop_words = set(stopwords.words("english")) # Create a set of English stopwords
|
14 |
+
lemmatizer = WordNetLemmatizer() # Initialize the WordNet Lemmatizer
|
15 |
+
|
16 |
+
# Define a function for text processing
|
17 |
+
def textProcess(sent):
|
18 |
+
try:
|
19 |
+
if sent is None: # Check if the input is None
|
20 |
+
return "" # Return an empty string if input is None
|
21 |
+
|
22 |
+
# Remove square brackets, parentheses, and other special characters
|
23 |
+
sent = re.sub('[][)(]', ' ', sent)
|
24 |
+
|
25 |
+
# Tokenize the text into words
|
26 |
+
sent = [word for word in sent.split() if not urlparse(word).scheme]
|
27 |
+
|
28 |
+
# Join the words back into a sentence
|
29 |
+
sent = ' '.join(sent)
|
30 |
+
|
31 |
+
# Remove Twitter usernames (words starting with @)
|
32 |
+
sent = re.sub(r'\@\w+', '', sent)
|
33 |
+
|
34 |
+
# Remove HTML tags using regular expression
|
35 |
+
sent = re.sub(re.compile("<.*?>"), '', sent)
|
36 |
+
|
37 |
+
# Remove non-alphanumeric characters (keep only letters and numbers)
|
38 |
+
sent = re.sub("[^A-Za-z0-9]", ' ', sent)
|
39 |
+
|
40 |
+
# Convert text to lowercase
|
41 |
+
sent = sent.lower()
|
42 |
+
|
43 |
+
# Split the text into words, strip whitespace, and join them back into a sentence
|
44 |
+
sent = [word.strip() for word in sent.split()]
|
45 |
+
sent = ' '.join(sent)
|
46 |
+
|
47 |
+
# Tokenize the text again
|
48 |
+
tokens = word_tokenize(sent)
|
49 |
+
|
50 |
+
# Remove stop words
|
51 |
+
for word in tokens.copy():
|
52 |
+
if word in stop_words:
|
53 |
+
tokens.remove(word)
|
54 |
+
|
55 |
+
# Lemmatize the remaining words
|
56 |
+
sent = [lemmatizer.lemmatize(word) for word in tokens]
|
57 |
+
|
58 |
+
# Join the lemmatized words back into a sentence
|
59 |
+
sent = ' '.join(sent)
|
60 |
+
|
61 |
+
# Return the processed text
|
62 |
+
return sent
|
63 |
+
|
64 |
+
except Exception as ex:
|
65 |
+
print(sent, "\n")
|
66 |
+
print("Error ", ex)
|
67 |
+
return "" # Return an empty string in case of an error
|
68 |
+
|
69 |
+
# Rest of your code...
|
70 |
+
|
71 |
+
# Load the pre-trained model from joblib
|
72 |
+
model = joblib.load('Stress identification NLP')
|
73 |
+
|
74 |
+
# Load the TF-IDF vectorizer used during training
|
75 |
+
tfidf_vectorizer = joblib.load('tfidf_vectorizer.joblib')
|
76 |
+
|
77 |
+
# Define the Streamlit web app
|
78 |
+
def main():
|
79 |
+
st.title("Stress Predictor Web App")
|
80 |
+
st.write("Enter some text to predict if the person is in stress or not.")
|
81 |
+
|
82 |
+
# Input text box
|
83 |
+
user_input = st.text_area("Enter text here:")
|
84 |
+
|
85 |
+
if st.button("Predict"):
|
86 |
+
if user_input:
|
87 |
+
# Process the input text
|
88 |
+
processed_text = textProcess(user_input)
|
89 |
+
|
90 |
+
# Use the same TF-IDF vectorizer to transform the input text
|
91 |
+
tfidf_text = tfidf_vectorizer.transform([processed_text])
|
92 |
+
|
93 |
+
# Make predictions using the loaded model
|
94 |
+
prediction = model.predict(tfidf_text)[0]
|
95 |
+
|
96 |
+
if prediction == 1:
|
97 |
+
result = "This person is in stress."
|
98 |
+
else:
|
99 |
+
result = "This person is not in stress."
|
100 |
+
|
101 |
+
st.write(result)
|
102 |
+
|
103 |
+
if __name__ == '__main__':
|
104 |
+
main()
|
tfidf_vectorizer.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1411ab31d137fe43a4bda6ea175f16f706714b0ee14ea779455d00bd2f7df5d
|
3 |
+
size 298535
|