File size: 30,450 Bytes
c14d9ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
""" Vision Transformer (ViT) in PyTorch

A PyTorch implement of Vision Transformers as described in
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929

The official jax code is released and available at https://github.com/google-research/vision_transformer

Status/TODO:
* Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights.
* Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches.
* Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code.
* Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future.

Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert

Hacked together by / Copyright 2020 Ross Wightman
"""
import warnings
import math
import torch
from functools import partial
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import drop_path, to_2tuple, trunc_normal_


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
        **kwargs
    }


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return 'p={}'.format(self.drop_prob)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        # x = self.drop(x)
        # commit this for the orignal BERT implement
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., window_size=None, attn_head_dim=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.v_bias = None

        if window_size:
            self.window_size = window_size
            self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
            self.relative_position_bias_table = nn.Parameter(
                torch.zeros(self.num_relative_distance, num_heads))  # 2*Wh-1 * 2*Ww-1, nH
            # cls to token & token 2 cls & cls to cls

            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(window_size[0])
            coords_w = torch.arange(window_size[1])
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += window_size[1] - 1
            relative_coords[:, :, 0] *= 2 * window_size[1] - 1
            relative_position_index = \
                torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
            relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
            relative_position_index[0, 0:] = self.num_relative_distance - 3
            relative_position_index[0:, 0] = self.num_relative_distance - 2
            relative_position_index[0, 0] = self.num_relative_distance - 1

            self.register_buffer("relative_position_index", relative_position_index)

            # trunc_normal_(self.relative_position_bias_table, std=.0)
        else:
            self.window_size = None
            self.relative_position_bias_table = None
            self.relative_position_index = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, rel_pos_bias=None, training_window_size=None):
        B, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        if self.relative_position_bias_table is not None:
            if training_window_size == self.window_size:
                relative_position_bias = \
                    self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                        self.window_size[0] * self.window_size[1] + 1,
                        self.window_size[0] * self.window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH
                relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
                attn = attn + relative_position_bias.unsqueeze(0)
            else:
                training_window_size = tuple(training_window_size.tolist())
                new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3
                # new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok
                new_relative_position_bias_table = F.interpolate(
                    self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads,
                                                                                 2 * self.window_size[0] - 1,
                                                                                 2 * self.window_size[1] - 1),
                    size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic',
                    align_corners=False)
                new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads,
                                                                                         new_num_relative_distance - 3).permute(
                    1, 0)
                new_relative_position_bias_table = torch.cat(
                    [new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0)

                # get pair-wise relative position index for each token inside the window
                coords_h = torch.arange(training_window_size[0])
                coords_w = torch.arange(training_window_size[1])
                coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
                coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
                relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
                relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
                relative_coords[:, :, 0] += training_window_size[0] - 1  # shift to start from 0
                relative_coords[:, :, 1] += training_window_size[1] - 1
                relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1
                relative_position_index = \
                    torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2,
                                dtype=relative_coords.dtype)
                relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
                relative_position_index[0, 0:] = new_num_relative_distance - 3
                relative_position_index[0:, 0] = new_num_relative_distance - 2
                relative_position_index[0, 0] = new_num_relative_distance - 1

                relative_position_bias = \
                    new_relative_position_bias_table[relative_position_index.view(-1)].view(
                        training_window_size[0] * training_window_size[1] + 1,
                        training_window_size[0] * training_window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH
                relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
                attn = attn + relative_position_bias.unsqueeze(0)

        if rel_pos_bias is not None:
            attn = attn + rel_pos_bias

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 window_size=None, attn_head_dim=None):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        if init_values is not None:
            self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
            self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x, rel_pos_bias=None, training_window_size=None):
        if self.gamma_1 is None:
            x = x + self.drop_path(
                self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias,
                                                            training_window_size=training_window_size))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=[224, 224], patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches_w = self.patch_shape[0]
        self.num_patches_h = self.patch_shape[1]
        # the so-called patch_shape is the patch shape during pre-training
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x, position_embedding=None, **kwargs):
        # FIXME look at relaxing size constraints
        # assert H == self.img_size[0] and W == self.img_size[1], \
        #     f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)
        Hp, Wp = x.shape[2], x.shape[3]

        if position_embedding is not None:
            # interpolate the position embedding to the corresponding size
            position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(0, 3,
                                                                                                                  1, 2)
            position_embedding = F.interpolate(position_embedding, size=(Hp, Wp), mode='bicubic')
            x = x + position_embedding

        x = x.flatten(2).transpose(1, 2)
        return x, (Hp, Wp)


class HybridEmbed(nn.Module):
    """ CNN Feature Map Embedding
    Extract feature map from CNN, flatten, project to embedding dim.
    """

    def __init__(self, backbone, img_size=[224, 224], feature_size=None, in_chans=3, embed_dim=768):
        super().__init__()
        assert isinstance(backbone, nn.Module)
        img_size = to_2tuple(img_size)
        self.img_size = img_size
        self.backbone = backbone
        if feature_size is None:
            with torch.no_grad():
                # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
                # map for all networks, the feature metadata has reliable channel and stride info, but using
                # stride to calc feature dim requires info about padding of each stage that isn't captured.
                training = backbone.training
                if training:
                    backbone.eval()
                o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
                feature_size = o.shape[-2:]
                feature_dim = o.shape[1]
                backbone.train(training)
        else:
            feature_size = to_2tuple(feature_size)
            feature_dim = self.backbone.feature_info.channels()[-1]
        self.num_patches = feature_size[0] * feature_size[1]
        self.proj = nn.Linear(feature_dim, embed_dim)

    def forward(self, x):
        x = self.backbone(x)[-1]
        x = x.flatten(2).transpose(1, 2)
        x = self.proj(x)
        return x


class RelativePositionBias(nn.Module):

    def __init__(self, window_size, num_heads):
        super().__init__()
        self.window_size = window_size
        self.num_heads = num_heads
        self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros(self.num_relative_distance, num_heads))  # 2*Wh-1 * 2*Ww-1, nH
        # cls to token & token 2 cls & cls to cls

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(window_size[0])
        coords_w = torch.arange(window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * window_size[1] - 1
        relative_position_index = \
            torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
        relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        relative_position_index[0, 0:] = self.num_relative_distance - 3
        relative_position_index[0:, 0] = self.num_relative_distance - 2
        relative_position_index[0, 0] = self.num_relative_distance - 1

        self.register_buffer("relative_position_index", relative_position_index)

        # trunc_normal_(self.relative_position_bias_table, std=.02)

    def forward(self, training_window_size):
        if training_window_size == self.window_size:
            relative_position_bias = \
                self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                    self.window_size[0] * self.window_size[1] + 1,
                    self.window_size[0] * self.window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        else:
            training_window_size = tuple(training_window_size.tolist())
            new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3
            # new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok
            new_relative_position_bias_table = F.interpolate(
                self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads,
                                                                             2 * self.window_size[0] - 1,
                                                                             2 * self.window_size[1] - 1),
                size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic',
                align_corners=False)
            new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads,
                                                                                     new_num_relative_distance - 3).permute(
                1, 0)
            new_relative_position_bias_table = torch.cat(
                [new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0)

            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(training_window_size[0])
            coords_w = torch.arange(training_window_size[1])
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += training_window_size[0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += training_window_size[1] - 1
            relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1
            relative_position_index = \
                torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2,
                            dtype=relative_coords.dtype)
            relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
            relative_position_index[0, 0:] = new_num_relative_distance - 3
            relative_position_index[0:, 0] = new_num_relative_distance - 2
            relative_position_index[0, 0] = new_num_relative_distance - 1

            relative_position_bias = \
                new_relative_position_bias_table[relative_position_index.view(-1)].view(
                    training_window_size[0] * training_window_size[1] + 1,
                    training_window_size[0] * training_window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww

        return relative_position_bias


class BEiT(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """

    def __init__(self,
                 img_size=[224, 224],
                 patch_size=16,
                 in_chans=3,
                 num_classes=80,
                 embed_dim=768,
                 depth=12,
                 num_heads=12,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 hybrid_backbone=None,
                 norm_layer=None,
                 init_values=None,
                 use_abs_pos_emb=False,
                 use_rel_pos_bias=False,
                 use_shared_rel_pos_bias=False,
                 use_checkpoint=True,
                 pretrained=None,
                 out_features=None,
                 ):

        super(BEiT, self).__init__()

        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.use_checkpoint = use_checkpoint

        if hybrid_backbone is not None:
            self.patch_embed = HybridEmbed(
                hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
        else:
            self.patch_embed = PatchEmbed(
                img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches
        self.out_features = out_features
        self.out_indices = [int(name[5:]) for name in out_features]

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        if use_abs_pos_emb:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        else:
            self.pos_embed = None
        self.pos_drop = nn.Dropout(p=drop_rate)

        self.use_shared_rel_pos_bias = use_shared_rel_pos_bias
        if use_shared_rel_pos_bias:
            self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
        else:
            self.rel_pos_bias = None

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.use_rel_pos_bias = use_rel_pos_bias
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
                init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None)
            for i in range(depth)])

        # trunc_normal_(self.mask_token, std=.02)

        if patch_size == 16:
            self.fpn1 = nn.Sequential(
                nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
                # nn.SyncBatchNorm(embed_dim),
                nn.BatchNorm2d(embed_dim),
                nn.GELU(),
                nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
            )

            self.fpn2 = nn.Sequential(
                nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
            )

            self.fpn3 = nn.Identity()

            self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
        elif patch_size == 8:
            self.fpn1 = nn.Sequential(
                nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
            )

            self.fpn2 = nn.Identity()

            self.fpn3 = nn.Sequential(
                nn.MaxPool2d(kernel_size=2, stride=2),
            )

            self.fpn4 = nn.Sequential(
                nn.MaxPool2d(kernel_size=4, stride=4),
            )

        if self.pos_embed is not None:
            trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)
        self.fix_init_weight()

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    '''
    def init_weights(self):
        """Initialize the weights in backbone.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        logger = get_root_logger()

        if self.pos_embed is not None:
            trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)
        self.fix_init_weight()

        if self.init_cfg is None:
            logger.warn(f'No pre-trained weights for '
                        f'{self.__class__.__name__}, '
                        f'training start from scratch')
        else:
            assert 'checkpoint' in self.init_cfg, f'Only support ' \
                                                  f'specify `Pretrained` in ' \
                                                  f'`init_cfg` in ' \
                                                  f'{self.__class__.__name__} '
            logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}")
            load_checkpoint(self,
                            filename=self.init_cfg['checkpoint'],
                            strict=False,
                            logger=logger,
                            beit_spec_expand_rel_pos = self.use_rel_pos_bias,
                            )
    '''

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def forward_features(self, x):
        B, C, H, W = x.shape
        x, (Hp, Wp) = self.patch_embed(x, self.pos_embed[:, 1:, :] if self.pos_embed is not None else None)
        # Hp, Wp are HW for patches
        batch_size, seq_len, _ = x.size()

        cls_tokens = self.cls_token.expand(batch_size, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        if self.pos_embed is not None:
            cls_tokens = cls_tokens + self.pos_embed[:, :1, :]
        x = torch.cat((cls_tokens, x), dim=1)
        x = self.pos_drop(x)

        features = []
        training_window_size = torch.tensor([Hp, Wp])

        rel_pos_bias = self.rel_pos_bias(training_window_size) if self.rel_pos_bias is not None else None

        for i, blk in enumerate(self.blocks):
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, rel_pos_bias, training_window_size)
            else:
                x = blk(x, rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)
            if i in self.out_indices:
                xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp)
                features.append(xp.contiguous())

        ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
        for i in range(len(features)):
            features[i] = ops[i](features[i])

        feat_out = {}

        for name, value in zip(self.out_features, features):
            feat_out[name] = value

        return feat_out

    def forward(self, x):
        x = self.forward_features(x)
        return x


def beit_base_patch16(pretrained=False, **kwargs):
    model = BEiT(
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        init_values=None,
        **kwargs)
    model.default_cfg = _cfg()
    return model

def beit_large_patch16(pretrained=False, **kwargs):
    model = BEiT(
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        init_values=None,
        **kwargs)
    model.default_cfg = _cfg()
    return model

def dit_base_patch16(pretrained=False, **kwargs):
    model = BEiT(
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        init_values=0.1,
        **kwargs)
    model.default_cfg = _cfg()
    return model

def dit_large_patch16(pretrained=False, **kwargs):
    model = BEiT(
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        init_values=1e-5,
        **kwargs)
    model.default_cfg = _cfg()
    return model

if __name__ == '__main__':
    model = BEiT(use_checkpoint=True, use_shared_rel_pos_bias=True)
    model = model.to("cuda:0")
    input1 = torch.rand(2, 3, 512, 762).to("cuda:0")
    input2 = torch.rand(2, 3, 800, 1200).to("cuda:0")
    input3 = torch.rand(2, 3, 720, 1000).to("cuda:0")
    output1 = model(input1)
    output2 = model(input2)
    output3 = model(input3)
    print("all done")