import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.models import Model class ClassToken(layers.Layer): def __init__(self): super().__init__() def build(self, input_shape): #initial values for the weight w_init = tf.random_normal_initializer() self.w = tf.Variable( initial_value = w_init(shape=(1, 1, input_shape[-1]), dtype=tf.float32), trainable = True ) def call(self, inputs): batch_size = tf.shape(inputs)[0] hidden_dim = self.w.shape[-1] #reshape cls = tf.broadcast_to(self.w, [batch_size, 1, hidden_dim]) #change data type cls = tf.cast(cls, dtype=inputs.dtype) return cls def mlp(x, cf): x = layers.Dense(cf['mlp_dim'], activation='gelu')(x) x = layers.Dropout(cf['dropout_rate'])(x) x = layers.Dense(cf['hidden_dim'])(x) x = layers.Dropout(cf['dropout_rate'])(x) return x def transformer_encoder(x, cf): skip_1 = x x = layers.LayerNormalization()(x) x = layers.MultiHeadAttention(num_heads=cf['num_heads'], key_dim=cf['hidden_dim'])(x,x) x = layers.Add()([x, skip_1]) skip_2 = x x = layers.LayerNormalization()(x) x = mlp(x, cf) x = layers.Add()([x, skip_2]) return x def resnet_block(x, filters, strides=1): identity = x x = layers.Conv2D(filters, kernel_size=5, strides=strides, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters, kernel_size=5, strides=1, padding='same')(x) x = layers.BatchNormalization()(x) if strides > 1: identity = layers.Conv2D(filters, kernel_size=1, strides=strides, padding='same')(identity) identity = layers.BatchNormalization()(identity) x = layers.Add()([x, identity]) x = layers.Activation('relu')(x) return x def build_resnet(input_shape): x = layers.Conv2D(32, kernel_size=7, strides=2, padding='same')(input_shape) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x) x = resnet_block(x, filters=32) x = resnet_block(x, filters=32) x = resnet_block(x, filters=64, strides=2) x = resnet_block(x, filters=64) x = resnet_block(x, filters=128, strides=2) x = resnet_block(x, filters=128) x = resnet_block(x, filters=256, strides=2) x = resnet_block(x, filters=256) return x def CNN_ViT(hp): input_shape = (hp['image_size'], hp['image_size'], hp['num_channels']) inputs = layers.Input(input_shape) print(inputs.shape) output = build_resnet(inputs) print(output.shape) patch_embed = layers.Conv2D(hp['hidden_dim'], kernel_size=(hp['patch_size']), padding='same')(output) print(patch_embed.shape) _, h, w, f = output.shape patch_embed = layers.Reshape((h*w,f))(output) #Position Embedding positions = tf.range(start=0, limit=hp['num_patches'], delta=1) pos_embed = layers.Embedding(input_dim=hp['num_patches'], output_dim=hp['hidden_dim'])(positions) print(f"patch embedding : {patch_embed.shape}") print(f"position embeding : {pos_embed.shape}") #Patch + Position Embedding embed = patch_embed + pos_embed #Token token = ClassToken()(embed) x = layers.Concatenate(axis=1)([token, embed]) #(None, 257, 256) #Transformer encoder for _ in range(hp['num_layers']): x = transformer_encoder(x, hp) x = layers.LayerNormalization()(x) x = x[:, 0, :] x = layers.Dense(hp['num_classes'], activation='softmax')(x) model = Model(inputs, x) return model