File size: 1,992 Bytes
8635d04
 
 
 
 
 
ac42b57
8635d04
 
 
 
 
00c17d4
8635d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0c5de0
8635d04
 
 
 
 
 
 
 
 
 
6dbcce6
8635d04
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import streamlit as st
import tensorflow as tf
import cv2
import numpy as np
from huggingface_hub import from_pretrained_keras

model = from_pretrained_keras('ErnestBeckham/ViT-Lungs')

hp = {}
hp['class_names'] = ["lung_aca", "lung_n", "lung_scc"]

def main():
    st.title("Lung Cancer Classification")

    # Upload image through drag and drop
    uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

    if uploaded_file is not None:
        # Convert the uploaded file to OpenCV format
        image = convert_to_opencv(uploaded_file)
        
        # Display the uploaded image
        st.image(image, channels="BGR", caption="Uploaded Image", use_column_width=True)

        # Display the image shape
        image_class = predict_single_image(image, model, hp)
        st.write(f"Image Class: {image_class}")

def convert_to_opencv(uploaded_file):
    # Read the uploaded file using OpenCV
    image_bytes = uploaded_file.read()
    np_arr = np.frombuffer(image_bytes, np.uint8)
    image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
    return image

def process_image_as_batch(image):
    #resize the image
    image = cv2.resize(image, [512, 512])
    #scale the image
    image = image / 255.0
    #change the data type of image
    image = image.astype(np.float32)
    return image

def predict_single_image(image, model, hp):
    # Preprocess the image
    preprocessed_image = process_image_as_batch(image)
    # Convert the preprocessed image to a TensorFlow tensor if needed
    preprocessed_image = tf.convert_to_tensor(preprocessed_image)
    # Add an extra batch dimension (required for model.predict)
    preprocessed_image = tf.expand_dims(preprocessed_image, axis=0)
    # Make the prediction
    predictions = model.predict(preprocessed_image)

    np.around(predictions)
    y_pred_classes = np.argmax(predictions, axis=1)
    class_name = hp['class_names'][y_pred_classes[0]]
    return class_name

if __name__ == "__main__":
    main()