Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
from utils.architectures import (get_generator, get_discriminator, | |
DCGAN, DCGANMonitor, LATENT_DIM) | |
from tensorflow.keras.losses import BinaryCrossentropy | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras.preprocessing.image import array_to_img # load_img, | |
# creating freash model architectures | |
generator = get_generator() | |
discriminator = get_discriminator() | |
# Load the trained TensorFlow Object Detection model | |
model_weights = "GANModel_Weights/DCGAN_weights" | |
dcgan = DCGAN(generator=generator, discriminator=discriminator, latent_dim=LATENT_DIM) | |
D_LR = 0.0001 | |
G_LR = 0.0003 | |
comp_params = { | |
"g_optimizer":Adam(learning_rate=G_LR, beta_1=0.5), | |
"d_optimizer":Adam(learning_rate=D_LR, beta_1=0.5), | |
"loss_fn":BinaryCrossentropy() | |
} | |
dcgan.compile(**comp_params) | |
dcgan.load_weights(model_weights) | |
def generate(): | |
noise = tf.random.normal([1, 100]) | |
# generate the image from noise | |
g_img = dcgan.generator(noise) | |
# denormalize the image | |
g_img = (g_img * 127.5) + 127.5 | |
# adjusting the image | |
g_img.numpy() | |
img = array_to_img(g_img[0]) | |
return img | |
# declerating the params | |
demo = gr.Interface(fn=generate, inputs=None,outputs=gr.Image()) | |
# Launching the demo | |
if __name__ == "__main__": | |
demo.launch() | |