File size: 11,979 Bytes
41d1bc5
 
 
 
 
 
 
 
 
15d89f9
 
 
 
41d1bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15d89f9
41d1bc5
 
 
 
15d89f9
 
 
 
 
 
 
 
 
 
 
 
 
 
41d1bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15d89f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41d1bc5
15d89f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32bc229
15d89f9
 
fe10ec9
15d89f9
 
 
 
 
 
6055e2f
15d89f9
6055e2f
 
 
15d89f9
6055e2f
15d89f9
 
6055e2f
15d89f9
 
 
 
 
 
32bc229
15d89f9
 
 
 
fe10ec9
15d89f9
 
 
 
 
41d1bc5
 
 
 
 
 
 
 
 
 
 
 
 
15d89f9
 
 
41d1bc5
 
 
 
 
 
 
 
 
 
 
15d89f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from typing import List, Union, Optional, Literal
import dataclasses

from tenacity import (
    retry,
    stop_after_attempt,  # type: ignore
    wait_random_exponential,  # type: ignore
)
import openai
import requests 
import json
import os
from groq import Groq

MessageRole = Literal["system", "user", "assistant"]


@dataclasses.dataclass()
class Message():
    role: MessageRole
    content: str


def message_to_str(message: Message) -> str:
    return f"{message.role}: {message.content}"


def messages_to_str(messages: List[Message]) -> str:
    return "\n".join([message_to_str(message) for message in messages])


@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
def gpt_completion(
        model: str,
        prompt: str,
        max_tokens: int = 1024,
        stop_strs: Optional[List[str]] = None,
        temperature: float = 0.0,
        num_comps=1,
) -> Union[List[str], str]:
    response = openai.Completion.create(
        model=model,
        prompt=prompt,
        temperature=temperature,
        max_tokens=max_tokens,
        top_p=1,
        frequency_penalty=0.0,
        presence_penalty=0.0,
        stop=stop_strs,
        n=num_comps,
    )
    if num_comps == 1:
        return response.choices[0].text  # type: ignore

    return [choice.text for choice in response.choices]  # type: ignore


@retry(wait=wait_random_exponential(min=1, max=180), stop=stop_after_attempt(6))
def gpt_chat(
    model: str,
    messages: List[Message],
    max_tokens: int = 1024,
    temperature: float = 0.0,
    num_comps=1,
) -> Union[List[str], str]:
    response = openai.ChatCompletion.create(
        model=model,
        messages=[dataclasses.asdict(message) for message in messages],
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=1,
        frequency_penalty=0.0,
        presence_penalty=0.0,
        n=num_comps,
    )
    if num_comps == 1:
        return response.choices[0].message.content  # type: ignore
    print("temp", temperature)
    return [choice.message.content for choice in response.choices]  # type: ignore


class ModelBase():
    def __init__(self, name: str):
        self.name = name
        self.is_chat = False

    def __repr__(self) -> str:
        return f'{self.name}'

    def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]:
        raise NotImplementedError

    def generate(self, prompt: str, max_tokens: int = 1024, stop_strs: Optional[List[str]] = None, temperature: float = 0.0, num_comps=1) -> Union[List[str], str]:
        raise NotImplementedError
    
class GroqBase():
    def __init__(self):
        self.is_chat = True
        self.client = Groq(
            api_key=os.environ.get("GROQ_API_KEY"),
        )
    
    def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]: 
        resps = []
        for i in range(num_comps):
            chat_completion = self.client.chat.completions.create(
                messages=[dataclasses.asdict(message) for message in messages],
                model="llama3-8b-8192",
            )

            response_text = chat_completion.choices[0].message.content
            resps.append(response_text)
        
        if num_comps == 1:
            return resps[0]
        else:
            return resps
    
    
class Samba():
    def __init__(self):
        self.is_chat = True
    
    def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]: 
        resps = []
        
        for i in range(num_comps):
            payload = {
                "inputs": [dataclasses.asdict(message) for message in messages],
                "params": {
                    "max_tokens_allowed_in_completion": {"type": "int", "value": 500},
                    "min_token_capacity_for_completion": {"type": "int", "value": 2},
                    "skip_special_token": {"type": "bool", "value": True},
                    "stop_sequences": {"type": "list", "value": ["[INST]", "[INST]", "[/INST]", "[/INST]"]}
                },
                "model": "llama3-8b"
            }
            url = "kjddazcq2e2wzvzv.snova.ai"
            key = "bGlnaHRuaW5nOlUyM3pMcFlHY3dmVzRzUGFy"
            
            headers = {
                "Authorization": f"Basic {key}",
                "Content-Type": "application/json"
            }
            post_response = requests.post(f'https://{url}/api/v1/chat/completion', json=payload, headers=headers, stream=True)
            response_text = ""
            for line in post_response.iter_lines():
                if line.startswith(b"data: "):
                    data_str = line.decode('utf-8')[6:]
                    try:
                        line_json = json.loads(data_str)
                        content = line_json['0'].get("stream_token", "")
                        if content:
                            response_text += content
                    except json.JSONDecodeError as e:
                        pass
            resps.append(response_text)
        if num_comps == 1:
            return resps[0]
        else:
            return resps
        
class GPTChat(ModelBase):
    def __init__(self, model_name: str):
        self.name = model_name
        self.is_chat = True

    def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]:
        return gpt_chat(self.name, messages, max_tokens, temperature, num_comps)


class GPT4(GPTChat):
    def __init__(self):
        super().__init__("gpt-4")

class GPT4o(GPTChat):
    def __init__(self):
        super().__init__("gpt-4o")

class GPT35(GPTChat):
    def __init__(self):
        super().__init__("gpt-3.5-turbo")


class GPTDavinci(ModelBase):
    def __init__(self, model_name: str):
        self.name = model_name

    def generate(self, prompt: str, max_tokens: int = 1024, stop_strs: Optional[List[str]] = None, temperature: float = 0, num_comps=1) -> Union[List[str], str]:
        return gpt_completion(self.name, prompt, max_tokens, stop_strs, temperature, num_comps)


class HFModelBase(ModelBase):
    """
    Base for huggingface chat models
    """

    def __init__(self, model_name: str, model, tokenizer, eos_token_id=None):
        self.name = model_name
        self.model = model
        self.tokenizer = tokenizer
        self.eos_token_id = eos_token_id if eos_token_id is not None else self.tokenizer.eos_token_id
        self.is_chat = True

    def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]:
        # NOTE: HF does not like temp of 0.0.
        if temperature < 0.0001:
            temperature = 0.0001

        prompt = self.prepare_prompt(messages)

        outputs = self.model.generate(
            prompt,
            max_new_tokens=min(
                max_tokens, self.model.config.max_position_embeddings),
            use_cache=True,
            do_sample=True,
            temperature=temperature,
            top_p=0.95,
            eos_token_id=self.eos_token_id,
            num_return_sequences=num_comps,
        )

        outs = self.tokenizer.batch_decode(outputs, skip_special_tokens=False)
        assert isinstance(outs, list)
        for i, out in enumerate(outs):
            assert isinstance(out, str)
            outs[i] = self.extract_output(out)

        if len(outs) == 1:
            return outs[0]  # type: ignore
        else:
            return outs  # type: ignore

    def prepare_prompt(self, messages: List[Message]):
        raise NotImplementedError

    def extract_output(self, output: str) -> str:
        raise NotImplementedError



class StarChat(HFModelBase):
    def __init__(self):
        import torch
        from transformers import AutoModelForCausalLM, AutoTokenizer
        model = AutoModelForCausalLM.from_pretrained(
            "HuggingFaceH4/starchat-beta",
            torch_dtype=torch.bfloat16,
            device_map="auto",
        )
        tokenizer = AutoTokenizer.from_pretrained(
            "HuggingFaceH4/starchat-beta",
        )
        super().__init__("starchat", model, tokenizer, eos_token_id=49155)

    def prepare_prompt(self, messages: List[Message]):
        prompt = ""
        for i, message in enumerate(messages):
            prompt += f"<|{message.role}|>\n{message.content}\n<|end|>\n"
            if i == len(messages) - 1:
                prompt += "<|assistant|>\n"

        return self.tokenizer.encode(prompt, return_tensors="pt").to(self.model.device)

    def extract_output(self, output: str) -> str:
        out = output.split("<|assistant|>")[1]
        if out.endswith("<|end|>"):
            out = out[:-len("<|end|>")]

        return out


class CodeLlama(HFModelBase):
    B_INST, E_INST = "[INST]", "[/INST]"
    B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"

    DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""

    def __init__(self, version: Literal["34b", "13b", "7b"] = "34b"):
        import torch
        from transformers import AutoModelForCausalLM, AutoTokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            f"codellama/CodeLlama-{version}-Instruct-hf",
            add_eos_token=True,
            add_bos_token=True,
            padding_side='left'
        )
        model = AutoModelForCausalLM.from_pretrained(
            f"codellama/CodeLlama-{version}-Instruct-hf",
            torch_dtype=torch.bfloat16,
            device_map="auto",
        )
        super().__init__("codellama", model, tokenizer)

    def prepare_prompt(self, messages: List[Message]):
        if messages[0].role != "system":
            messages = [
                Message(role="system", content=self.DEFAULT_SYSTEM_PROMPT)
            ] + messages
        messages = [
            Message(role=messages[1].role, content=self.B_SYS +
                    messages[0].content + self.E_SYS + messages[1].content)
        ] + messages[2:]
        assert all([msg.role == "user" for msg in messages[::2]]) and all(
            [msg.role == "assistant" for msg in messages[1::2]]
        ), (
            "model only supports 'system', 'user' and 'assistant' roles, "
            "starting with 'system', then 'user' and alternating (u/a/u/a/u...)"
        )
        messages_tokens: List[int] = sum(
            [
                self.tokenizer.encode(
                    f"{self.B_INST} {(prompt.content).strip()} {self.E_INST} {(answer.content).strip()} ",
                )
                for prompt, answer in zip(
                    messages[::2],
                    messages[1::2],
                )
            ],
            [],
        )
        assert messages[-1].role == "user", f"Last message must be from user, got {messages[-1].role}"
        messages_tokens += self.tokenizer.encode(
            f"{self.B_INST} {(messages[-1].content).strip()} {self.E_INST}",
        )
        # remove eos token from last message
        messages_tokens = messages_tokens[:-1]
        import torch
        return torch.tensor([messages_tokens]).to(self.model.device)

    def extract_output(self, output: str) -> str:
        out = output.split("[/INST]")[-1].split("</s>")[0].strip()
        return out