from typing import List, Union, Optional, Literal import dataclasses from tenacity import ( retry, stop_after_attempt, # type: ignore wait_random_exponential, # type: ignore ) import openai import requests import json import os from groq import Groq MessageRole = Literal["system", "user", "assistant"] @dataclasses.dataclass() class Message(): role: MessageRole content: str def message_to_str(message: Message) -> str: return f"{message.role}: {message.content}" def messages_to_str(messages: List[Message]) -> str: return "\n".join([message_to_str(message) for message in messages]) @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6)) def gpt_completion( model: str, prompt: str, max_tokens: int = 1024, stop_strs: Optional[List[str]] = None, temperature: float = 0.0, num_comps=1, ) -> Union[List[str], str]: response = openai.Completion.create( model=model, prompt=prompt, temperature=temperature, max_tokens=max_tokens, top_p=1, frequency_penalty=0.0, presence_penalty=0.0, stop=stop_strs, n=num_comps, ) if num_comps == 1: return response.choices[0].text # type: ignore return [choice.text for choice in response.choices] # type: ignore @retry(wait=wait_random_exponential(min=1, max=180), stop=stop_after_attempt(6)) def gpt_chat( model: str, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.0, num_comps=1, ) -> Union[List[str], str]: response = openai.ChatCompletion.create( model=model, messages=[dataclasses.asdict(message) for message in messages], max_tokens=max_tokens, temperature=temperature, top_p=1, frequency_penalty=0.0, presence_penalty=0.0, n=num_comps, ) if num_comps == 1: return response.choices[0].message.content # type: ignore print("temp", temperature) return [choice.message.content for choice in response.choices] # type: ignore class ModelBase(): def __init__(self, name: str): self.name = name self.is_chat = False def __repr__(self) -> str: return f'{self.name}' def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]: raise NotImplementedError def generate(self, prompt: str, max_tokens: int = 1024, stop_strs: Optional[List[str]] = None, temperature: float = 0.0, num_comps=1) -> Union[List[str], str]: raise NotImplementedError class GroqBase(): def __init__(self): self.is_chat = True self.client = Groq( api_key=os.environ.get("GROQ_API_KEY"), ) def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]: resps = [] for i in range(num_comps): chat_completion = self.client.chat.completions.create( messages=[dataclasses.asdict(message) for message in messages], model="llama3-8b-8192", ) response_text = chat_completion.choices[0].message.content resps.append(response_text) if num_comps == 1: return resps[0] else: return resps class Samba(): def __init__(self): self.is_chat = True def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]: resps = [] for i in range(num_comps): payload = { "inputs": [dataclasses.asdict(message) for message in messages], "params": { "max_tokens_allowed_in_completion": {"type": "int", "value": 500}, "min_token_capacity_for_completion": {"type": "int", "value": 2}, "skip_special_token": {"type": "bool", "value": True}, "stop_sequences": {"type": "list", "value": ["[INST]", "[INST]", "[/INST]", "[/INST]"]} }, "model": "llama3-8b" } url = "kjddazcq2e2wzvzv.snova.ai" key = "bGlnaHRuaW5nOlUyM3pMcFlHY3dmVzRzUGFy" headers = { "Authorization": f"Basic {key}", "Content-Type": "application/json" } post_response = requests.post(f'https://{url}/api/v1/chat/completion', json=payload, headers=headers, stream=True) response_text = "" for line in post_response.iter_lines(): if line.startswith(b"data: "): data_str = line.decode('utf-8')[6:] try: line_json = json.loads(data_str) content = line_json['0'].get("stream_token", "") if content: response_text += content except json.JSONDecodeError as e: pass resps.append(response_text) if num_comps == 1: return resps[0] else: return resps class GPTChat(ModelBase): def __init__(self, model_name: str): self.name = model_name self.is_chat = True def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]: return gpt_chat(self.name, messages, max_tokens, temperature, num_comps) class GPT4(GPTChat): def __init__(self): super().__init__("gpt-4") class GPT4o(GPTChat): def __init__(self): super().__init__("gpt-4o") class GPT35(GPTChat): def __init__(self): super().__init__("gpt-3.5-turbo") class GPTDavinci(ModelBase): def __init__(self, model_name: str): self.name = model_name def generate(self, prompt: str, max_tokens: int = 1024, stop_strs: Optional[List[str]] = None, temperature: float = 0, num_comps=1) -> Union[List[str], str]: return gpt_completion(self.name, prompt, max_tokens, stop_strs, temperature, num_comps) class HFModelBase(ModelBase): """ Base for huggingface chat models """ def __init__(self, model_name: str, model, tokenizer, eos_token_id=None): self.name = model_name self.model = model self.tokenizer = tokenizer self.eos_token_id = eos_token_id if eos_token_id is not None else self.tokenizer.eos_token_id self.is_chat = True def generate_chat(self, messages: List[Message], max_tokens: int = 1024, temperature: float = 0.2, num_comps: int = 1) -> Union[List[str], str]: # NOTE: HF does not like temp of 0.0. if temperature < 0.0001: temperature = 0.0001 prompt = self.prepare_prompt(messages) outputs = self.model.generate( prompt, max_new_tokens=min( max_tokens, self.model.config.max_position_embeddings), use_cache=True, do_sample=True, temperature=temperature, top_p=0.95, eos_token_id=self.eos_token_id, num_return_sequences=num_comps, ) outs = self.tokenizer.batch_decode(outputs, skip_special_tokens=False) assert isinstance(outs, list) for i, out in enumerate(outs): assert isinstance(out, str) outs[i] = self.extract_output(out) if len(outs) == 1: return outs[0] # type: ignore else: return outs # type: ignore def prepare_prompt(self, messages: List[Message]): raise NotImplementedError def extract_output(self, output: str) -> str: raise NotImplementedError class StarChat(HFModelBase): def __init__(self): import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "HuggingFaceH4/starchat-beta", torch_dtype=torch.bfloat16, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained( "HuggingFaceH4/starchat-beta", ) super().__init__("starchat", model, tokenizer, eos_token_id=49155) def prepare_prompt(self, messages: List[Message]): prompt = "" for i, message in enumerate(messages): prompt += f"<|{message.role}|>\n{message.content}\n<|end|>\n" if i == len(messages) - 1: prompt += "<|assistant|>\n" return self.tokenizer.encode(prompt, return_tensors="pt").to(self.model.device) def extract_output(self, output: str) -> str: out = output.split("<|assistant|>")[1] if out.endswith("<|end|>"): out = out[:-len("<|end|>")] return out class CodeLlama(HFModelBase): B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<>\n", "\n<>\n\n" DEFAULT_SYSTEM_PROMPT = """\ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""" def __init__(self, version: Literal["34b", "13b", "7b"] = "34b"): import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( f"codellama/CodeLlama-{version}-Instruct-hf", add_eos_token=True, add_bos_token=True, padding_side='left' ) model = AutoModelForCausalLM.from_pretrained( f"codellama/CodeLlama-{version}-Instruct-hf", torch_dtype=torch.bfloat16, device_map="auto", ) super().__init__("codellama", model, tokenizer) def prepare_prompt(self, messages: List[Message]): if messages[0].role != "system": messages = [ Message(role="system", content=self.DEFAULT_SYSTEM_PROMPT) ] + messages messages = [ Message(role=messages[1].role, content=self.B_SYS + messages[0].content + self.E_SYS + messages[1].content) ] + messages[2:] assert all([msg.role == "user" for msg in messages[::2]]) and all( [msg.role == "assistant" for msg in messages[1::2]] ), ( "model only supports 'system', 'user' and 'assistant' roles, " "starting with 'system', then 'user' and alternating (u/a/u/a/u...)" ) messages_tokens: List[int] = sum( [ self.tokenizer.encode( f"{self.B_INST} {(prompt.content).strip()} {self.E_INST} {(answer.content).strip()} ", ) for prompt, answer in zip( messages[::2], messages[1::2], ) ], [], ) assert messages[-1].role == "user", f"Last message must be from user, got {messages[-1].role}" messages_tokens += self.tokenizer.encode( f"{self.B_INST} {(messages[-1].content).strip()} {self.E_INST}", ) # remove eos token from last message messages_tokens = messages_tokens[:-1] import torch return torch.tensor([messages_tokens]).to(self.model.device) def extract_output(self, output: str) -> str: out = output.split("[/INST]")[-1].split("")[0].strip() return out