Spaces:
Running
Running
File size: 101,837 Bytes
2dc11df e3ed104 2dc11df ee87a3a 2dc11df ee87a3a 2dc11df bc11d2a 2dc11df d1292a4 2dc11df 8068524 e3ed104 8068524 b6190c4 8708def 2dc11df b6190c4 2dc11df b6190c4 2dc11df aea9e97 2dc11df 2757a07 2dc11df aea9e97 2dc11df 9c67e5a 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df e3ed104 2dc11df 8708def 2dc11df 8708def 2757a07 8708def 2757a07 8708def fa3069a 2dc11df fa3069a 8708def fa3069a 8708def fa3069a 2dc11df 8708def 2dc11df 8708def 2dc11df b6190c4 8708def b6190c4 2dc11df b6190c4 2dc11df cf1091a ee87a3a 2dc11df 8708def 2dc11df ecd56c8 5abd550 ecd56c8 c5a524a 2dc11df 8708def 2dc11df bc11d2a 8708def bc11d2a 8708def 2dc11df 8708def 2dc11df e559b1c 2dc11df 8708def 2dc11df bc11d2a 8708def bc11d2a 2dc11df 8708def 2dc11df 8708def 2dc11df 8708def 2dc11df bc11d2a 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df 8708def e3ed104 4fc5f55 2dc11df b96896b e16096a 2dc11df 8068524 b6190c4 2dc11df b6190c4 2dc11df e16096a 8708def 2dc11df 29ba522 b6190c4 2dc11df 8708def b6190c4 8708def 2dc11df b6190c4 2dc11df 8708def 2dc11df b6190c4 2dc11df 8708def 2dc11df 2fe62fc 2dc11df 8068524 2dc11df b96896b 2dc11df b6190c4 2dc11df b6190c4 2dc11df b96896b 2dc11df b96896b 2dc11df b96896b 2dc11df b96896b 2dc11df b96896b 2dc11df b96896b 2dc11df ecd56c8 2dc11df e3ed104 2dc11df e3ed104 2dc11df ecd56c8 2dc11df 8068524 b96896b 2dc11df e3ed104 2dc11df b6190c4 2dc11df 8068524 8708def 2dc11df b96896b 2a55d28 b96896b 1f7e0f0 b96896b 2dc11df b96896b 2a55d28 b96896b 1f7e0f0 b96896b 2dc11df 8068524 2dc11df 8068524 2dc11df 29ba522 8068524 2dc11df 8068524 2dc11df b6190c4 2dc11df b6190c4 2dc11df 8068524 b6190c4 8708def 8068524 b6190c4 2dc11df 8708def 2dc11df b6190c4 2dc11df ee87a3a 2dc11df ee87a3a 2dc11df 6b3e32a b6190c4 6b3e32a 1552a49 6b3e32a 1552a49 d01447a 6b3e32a 8ed8e45 6b3e32a d8e578b b6190c4 d8e578b 6b3e32a 8ed8e45 6b3e32a cce94d8 6b3e32a 2dc11df b6190c4 e3ed104 2dc11df 8068524 2dc11df 8708def 29ba522 8708def 2dc11df 8ed8e45 8708def b6190c4 e3ed104 8708def b6190c4 8708def b6190c4 8708def b6190c4 e3ed104 b6190c4 e3ed104 b6190c4 d0a24b6 b6190c4 29ba522 e3ed104 4fc5f55 e3ed104 2dc11df e3ed104 b6190c4 2dc11df b6190c4 2dc11df d8e578b 2dc11df b6190c4 2dc11df b6190c4 2dc11df 8ed8e45 2dc11df 8ed8e45 2dc11df b6190c4 2dc11df b6190c4 1552a49 b6190c4 8068524 b6190c4 2dc11df 2d32648 2dc11df 8ed8e45 adb7f30 e3ed104 adb7f30 2dc11df adb7f30 8ed8e45 2dc11df 1d332ea adb7f30 8ed8e45 2dc11df cbf8cd2 2d32648 7438931 1552a49 8dfaaf2 7438931 b6190c4 2dc11df b6190c4 e3ed104 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df e559b1c 2dc11df b6190c4 e559b1c 2dc11df b6190c4 e559b1c af1dcec 2dc11df b6190c4 2dc11df b96896b 2dc11df 8708def 29ba522 2dc11df b6190c4 3564d1b b6190c4 3564d1b b6190c4 3564d1b e3ed104 2dc11df 8708def b6190c4 8708def 29ba522 2dc11df 29ba522 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df b6190c4 2dc11df 8068524 2dc11df 8068524 2dc11df 8708def 2dc11df 65eada8 b6190c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 |
from io import BytesIO
import io
from math import inf
import os
import base64
import json
import gradio as gr
import numpy as np
from gradio import processing_utils
import requests
from packaging import version
from PIL import Image, ImageDraw
import functools
import emoji
from langchain_community.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
from caption_anything.model import CaptionAnything
from caption_anything.utils.image_editing_utils import create_bubble_frame
from caption_anything.utils.utils import mask_painter, seg_model_map, prepare_segmenter, image_resize
from caption_anything.utils.parser import parse_augment
from caption_anything.captioner import build_captioner
from caption_anything.text_refiner import build_text_refiner
from caption_anything.segmenter import build_segmenter
from chatbox import ConversationBot, build_chatbot_tools, get_new_image_name
from segment_anything import sam_model_registry
import easyocr
import re
import edge_tts
from langchain import __version__
import torch
from transformers import AutoProcessor, SiglipModel
import faiss
from huggingface_hub import hf_hub_download
from datasets import load_dataset
import pandas as pd
import requests
import spaces
# Print the current version of LangChain
print(f"Current LangChain version: {__version__}")
print("testing testing")
# import tts
###############################################################################
############# this part is for 3D generate #############
###############################################################################
# import spaces #
# import threading
# lock = threading.Lock()
import os
# import uuid
# from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
# from diffusers.utils import export_to_video
# from safetensors.torch import load_file
#from diffusers.models.modeling_outputs import Transformer2DModelOutput
import random
import uuid
import json
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import imageio
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
get_zero123plus_input_cameras,
get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
import tempfile
from functools import partial
from huggingface_hub import hf_hub_download
# def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
# """
# Get the rendering camera parameters.
# """
# c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
# if is_flexicubes:
# cameras = torch.linalg.inv(c2ws)
# cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
# else:
# extrinsics = c2ws.flatten(-2)
# intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
# cameras = torch.cat([extrinsics, intrinsics], dim=-1)
# cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
# return cameras
# def images_to_video(images, output_path, fps=30):
# # images: (N, C, H, W)
# os.makedirs(os.path.dirname(output_path), exist_ok=True)
# frames = []
# for i in range(images.shape[0]):
# frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
# assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
# f"Frame shape mismatch: {frame.shape} vs {images.shape}"
# assert frame.min() >= 0 and frame.max() <= 255, \
# f"Frame value out of range: {frame.min()} ~ {frame.max()}"
# frames.append(frame)
# imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
# ###############################################################################
# # Configuration.
# ###############################################################################
# import shutil
# def find_cuda():
# # Check if CUDA_HOME or CUDA_PATH environment variables are set
# cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
# if cuda_home and os.path.exists(cuda_home):
# return cuda_home
# # Search for the nvcc executable in the system's PATH
# nvcc_path = shutil.which('nvcc')
# if nvcc_path:
# # Remove the 'bin/nvcc' part to get the CUDA installation path
# cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
# return cuda_path
# return None
# cuda_path = find_cuda()
# if cuda_path:
# print(f"CUDA installation found at: {cuda_path}")
# else:
# print("CUDA installation not found")
# config_path = 'configs/instant-nerf-base.yaml'
# config = OmegaConf.load(config_path)
# config_name = os.path.basename(config_path).replace('.yaml', '')
# model_config = config.model_config
# infer_config = config.infer_config
# IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
# device = torch.device('cuda')
# # load diffusion model
# print('Loading diffusion model ...')
# pipeline = DiffusionPipeline.from_pretrained(
# "sudo-ai/zero123plus-v1.2",
# custom_pipeline="zero123plus",
# torch_dtype=torch.float16,
# )
# pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
# pipeline.scheduler.config, timestep_spacing='trailing'
# )
# # load custom white-background UNet
# unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
# state_dict = torch.load(unet_ckpt_path, map_location='cpu')
# pipeline.unet.load_state_dict(state_dict, strict=True)
# pipeline = pipeline.to(device)
# # load reconstruction model
# print('Loading reconstruction model ...')
# model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_nerf_base.ckpt", repo_type="model")
# model0 = instantiate_from_config(model_config)
# state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
# state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
# model0.load_state_dict(state_dict, strict=True)
# model0 = model0.to(device)
# print('Loading Finished!')
# def check_input_image(input_image):
# if input_image is None:
# raise gr.Error("No image uploaded!")
# image = None
# else:
# image = Image.open(input_image)
# return image
# def preprocess(input_image, do_remove_background):
# rembg_session = rembg.new_session() if do_remove_background else None
# if do_remove_background:
# input_image = remove_background(input_image, rembg_session)
# input_image = resize_foreground(input_image, 0.85)
# return input_image
# # @spaces.GPU
# def generate_mvs(input_image, sample_steps, sample_seed):
# seed_everything(sample_seed)
# # sampling
# z123_image = pipeline(
# input_image,
# num_inference_steps=sample_steps
# ).images[0]
# show_image = np.asarray(z123_image, dtype=np.uint8)
# show_image = torch.from_numpy(show_image) # (960, 640, 3)
# show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
# show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
# show_image = Image.fromarray(show_image.numpy())
# return z123_image, show_image
# # @spaces.GPU
# def make3d(images):
# global model0
# if IS_FLEXICUBES:
# model0.init_flexicubes_geometry(device)
# model0 = model0.eval()
# images = np.asarray(images, dtype=np.float32) / 255.0
# images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
# images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
# input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
# render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
# images = images.unsqueeze(0).to(device)
# images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
# mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
# print(mesh_fpath)
# mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
# mesh_dirname = os.path.dirname(mesh_fpath)
# video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
# mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
# with torch.no_grad():
# # get triplane
# planes = model0.forward_planes(images, input_cameras)
# # # get video
# # chunk_size = 20 if IS_FLEXICUBES else 1
# # render_size = 384
# # frames = []
# # for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
# # if IS_FLEXICUBES:
# # frame = model.forward_geometry(
# # planes,
# # render_cameras[:, i:i+chunk_size],
# # render_size=render_size,
# # )['img']
# # else:
# # frame = model.synthesizer(
# # planes,
# # cameras=render_cameras[:, i:i+chunk_size],
# # render_size=render_size,
# # )['images_rgb']
# # frames.append(frame)
# # frames = torch.cat(frames, dim=1)
# # images_to_video(
# # frames[0],
# # video_fpath,
# # fps=30,
# # )
# # print(f"Video saved to {video_fpath}")
# # get mesh
# mesh_out = model0.extract_mesh(
# planes,
# use_texture_map=False,
# **infer_config,
# )
# vertices, faces, vertex_colors = mesh_out
# vertices = vertices[:, [1, 2, 0]]
# save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
# save_obj(vertices, faces, vertex_colors, mesh_fpath)
# print(f"Mesh saved to {mesh_fpath}")
# return mesh_fpath, mesh_glb_fpath
###############################################################################
############# above part is for 3D generate #############
###############################################################################
###############################################################################
############# This part is for sCLIP #############
###############################################################################
# download model and dataset
hf_hub_download("merve/siglip-faiss-wikiart", "siglip_10k_latest.index", local_dir="./")
hf_hub_download("merve/siglip-faiss-wikiart", "wikiart_10k_latest.csv", local_dir="./")
# read index, dataset and load siglip model and processor
index = faiss.read_index("./siglip_10k_latest.index")
df = pd.read_csv("./wikiart_10k_latest.csv")
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
slipmodel = SiglipModel.from_pretrained("google/siglip-base-patch16-224").to(device)
def read_image_from_url(url):
response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB")
return img
#@spaces.GPU
def extract_features_siglip(image):
with torch.no_grad():
inputs = processor(images=image, return_tensors="pt").to(device)
image_features = slipmodel.get_image_features(**inputs)
return image_features
@spaces.GPU
def infer(image_path):
input_image = Image.open(image_path).convert("RGB")
input_features = extract_features_siglip(input_image.convert("RGB"))
input_features = input_features.detach().cpu().numpy()
input_features = np.float32(input_features)
faiss.normalize_L2(input_features)
distances, indices = index.search(input_features, 3)
gallery_output = []
for i,v in enumerate(indices[0]):
sim = -distances[0][i]
image_url = df.iloc[v]["Link"]
img_retrieved = read_image_from_url(image_url)
gallery_output.append(img_retrieved)
return gallery_output
###############################################################################
############# Above part is for sCLIP #############
###############################################################################
###############################################################################
############# this part is for text to image #############
###############################################################################
# # Use environment variables for flexibility
MODEL_ID = os.getenv("MODEL_ID", "sd-community/sdxl-flash")
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
# # Determine device and load model outside of function for efficiency
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# pipe = StableDiffusionXLPipeline.from_pretrained(
# MODEL_ID,
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
# use_safetensors=True,
# add_watermarker=False,
# ).to(device)
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# # Torch compile for potential speedup (experimental)
# if USE_TORCH_COMPILE:
# pipe.compile()
# # CPU offloading for larger RAM capacity (experimental)
# if ENABLE_CPU_OFFLOAD:
# pipe.enable_model_cpu_offload()
MAX_SEED = np.iinfo(np.int32).max
# def save_image(img):
# unique_name = str(uuid.uuid4()) + ".png"
# img.save(unique_name)
# return unique_name
# def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# return seed
# @spaces.GPU(duration=30, queue=False)
# def generate(
# prompt: str,
# negative_prompt: str = "",
# use_negative_prompt: bool = False,
# seed: int = 1,
# width: int = 200,
# height: int = 200,
# guidance_scale: float = 3,
# num_inference_steps: int = 30,
# randomize_seed: bool = False,
# num_images: int = 4, # Number of images to generate
# use_resolution_binning: bool = True,
# progress=gr.Progress(track_tqdm=True),
# ):
# seed = int(randomize_seed_fn(seed, randomize_seed))
# generator = torch.Generator(device=device).manual_seed(seed)
# # Improved options handling
# options = {
# "prompt": [prompt] * num_images,
# "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
# "width": width,
# "height": height,
# "guidance_scale": guidance_scale,
# "num_inference_steps": num_inference_steps,
# "generator": generator,
# "output_type": "pil",
# }
# # Use resolution binning for faster generation with less VRAM usage
# # if use_resolution_binning:
# # options["use_resolution_binning"] = True
# # Generate images potentially in batches
# images = []
# for i in range(0, num_images, BATCH_SIZE):
# batch_options = options.copy()
# batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
# if "negative_prompt" in batch_options:
# batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
# images.extend(pipe(**batch_options).images)
# image_paths = [save_image(img) for img in images]
# return image_paths, seed
# examples = [
# "a cat eating a piece of cheese",
# "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
# "Ironman VS Hulk, ultrarealistic",
# "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
# "An alien holding a sign board containing the word 'Flash', futuristic, neonpunk",
# "Kids going to school, Anime style"
# ]
###############################################################################
############# above part is for text to image #############
###############################################################################
print("4")
css = """
#warning {background-color: #FFCCCB}
.tools_button {
background: white;
border: none !important;
box-shadow: none !important;
}
.info_btn {
background: white;
border: none !important;
box-shadow: none !important;
}
.function_button {
border: none !important;
box-shadow: none !important;
}
#tool_box {max-width: 50px}
"""
filtered_language_dict = {
'English': 'en-US-JennyNeural',
'Chinese': 'zh-CN-XiaoxiaoNeural',
'French': 'fr-FR-DeniseNeural',
'Spanish': 'es-MX-DaliaNeural',
'Arabic': 'ar-SA-ZariyahNeural',
'Portuguese': 'pt-BR-FranciscaNeural',
'Cantonese': 'zh-HK-HiuGaaiNeural'
}
focus_map = {
"D":0,
"DA":1,
"DAI":2,
"DDA":3
}
'''
prompt_list = [
'Wiki_caption: {Wiki_caption}, you have to generate a caption according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}, you have to select sentences from wiki caption that describe the surrounding objects that may be associated with the picture object. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}. You have to choose sentences from the wiki caption that describe unrelated objects to the image. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}. You have to choose sentences from the wiki caption that describe unrelated objects to the image. Around {length} words of {sentiment} sentiment in {language}.'
]
prompt_list = [
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact (describes the object but does not include analysis)as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis and one interpret as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and the objects that may be related to the selected object and list one fact of selected object, one fact of related object and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.'
]
'''
prompt_list = [
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact (describes the selected object but does not include analysis)as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis and one interpret as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and the objects that may be related to the selected object and list one fact of selected object, one fact of related object and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.'
]
gpt_state = 0
VOICE = "en-GB-SoniaNeural"
article = """
<div style='margin:20px auto;'>
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p>
</div>
"""
args = parse_augment()
args.segmenter = "huge"
args.segmenter_checkpoint = "sam_vit_h_4b8939.pth"
args.clip_filter = True
try:
print("Before preparing segmenter")
if args.segmenter_checkpoint is None:
_, segmenter_checkpoint = prepare_segmenter(args.segmenter)
else:
segmenter_checkpoint = args.segmenter_checkpoint
print("After preparing segmenter")
except Exception as e:
print(f"Error in preparing segmenter: {e}")
try:
print("Before building captioner")
shared_captioner = build_captioner(args.captioner, args.device, args)
print("After building captioner")
except Exception as e:
print(f"Error in building captioner: {e}")
try:
print("Before loading SAM model")
shared_sam_model = sam_model_registry[seg_model_map[args.segmenter]](checkpoint=segmenter_checkpoint).to(args.device)
print("After loading SAM model")
except Exception as e:
print(f"Error in loading SAM model: {e}")
try:
print("Before initializing OCR reader")
ocr_lang = ["ch_tra", "en"]
shared_ocr_reader = easyocr.Reader(ocr_lang,model_storage_directory=".EasyOCR/model")
print("After initializing OCR reader")
except Exception as e:
print(f"Error in initializing OCR reader: {e}")
try:
print("Before building chatbot tools")
tools_dict = {e.split('_')[0].strip(): e.split('_')[1].strip() for e in args.chat_tools_dict.split(',')}
shared_chatbot_tools = build_chatbot_tools(tools_dict)
print("After building chatbot tools")
except Exception as e:
print(f"Error in building chatbot tools: {e}")
print(5)
# class ImageSketcher(gr.Image):
# """
# Fix the bug of gradio.Image that cannot upload with tool == 'sketch'.
# """
# is_template = True # Magic to make this work with gradio.Block, don't remove unless you know what you're doing.
# def __init__(self, **kwargs):
# super().__init__(**kwargs)
# def preprocess(self, x):
# if self.tool == 'sketch' and self.source in ["upload", "webcam"]:
# assert isinstance(x, dict)
# if x['mask'] is None:
# decode_image = processing_utils.decode_base64_to_image(x['image'])
# width, height = decode_image.size
# mask = np.zeros((height, width, 4), dtype=np.uint8)
# mask[..., -1] = 255
# mask = self.postprocess(mask)
# x['mask'] = mask
# return super().preprocess(x)
def build_caption_anything_with_models(args, api_key="", captioner=None, sam_model=None, ocr_reader=None, text_refiner=None,
session_id=None):
segmenter = build_segmenter(args.segmenter, args.device, args, model=sam_model)
captioner = captioner
if session_id is not None:
print('Init caption anything for session {}'.format(session_id))
return CaptionAnything(args, api_key, captioner=captioner, segmenter=segmenter, ocr_reader=ocr_reader, text_refiner=text_refiner)
def validate_api_key(api_key):
api_key = str(api_key).strip()
print(api_key)
try:
test_llm = ChatOpenAI(model_name="gpt-4o", temperature=0, openai_api_key=api_key)
print("test_llm")
response = test_llm([HumanMessage(content='Hello')])
print(response)
return True
except Exception as e:
print(f"API key validation failed: {e}")
return False
def init_openai_api_key(api_key=""):
# api_key = 'sk-proj-bxHhgjZV8TVgd1IupZrUT3BlbkFJvrthq6zIxpZVk3vwsvJ9'
text_refiner = None
visual_chatgpt = None
if api_key and len(api_key) > 30:
print(api_key)
if validate_api_key(api_key):
try:
# text_refiner = build_text_refiner(args.text_refiner, args.device, args, api_key)
# assert len(text_refiner.llm('hi')) > 0 # test
text_refiner = None
print("text refiner")
visual_chatgpt = ConversationBot(shared_chatbot_tools, api_key=api_key)
except Exception as e:
print(f"Error initializing TextRefiner or ConversationBot: {e}")
text_refiner = None
visual_chatgpt = None
else:
print("Invalid API key.")
else:
print("API key is too short.")
print(text_refiner)
openai_available = text_refiner is not None
if visual_chatgpt:
global gpt_state
gpt_state=1
# return [gr.update(visible=True)]+[gr.update(visible=False)]+[gr.update(visible=True)]*3+[gr.update(visible=False)]+ [gr.update(visible=False)]*3 + [text_refiner, visual_chatgpt, None]+[gr.update(visible=True)]*3
return [gr.update(visible=True)]+[gr.update(visible=False)]+[gr.update(visible=True)]*3+[gr.update(visible=False)]+ [gr.update(visible=False)]*3 + [text_refiner, visual_chatgpt, None]+[gr.update(visible=True)]
else:
gpt_state=0
# return [gr.update(visible=False)]*7 + [gr.update(visible=True)]*2 + [text_refiner, visual_chatgpt, 'Your OpenAI API Key is not available']+[gr.update(visible=False)]*3
return [gr.update(visible=False)]*7 + [gr.update(visible=True)]*2 + [text_refiner, visual_chatgpt, 'Your OpenAI API Key is not available']+[gr.update(visible=False)]
def init_wo_openai_api_key():
global gpt_state
gpt_state=0
# return [gr.update(visible=False)]*4 + [gr.update(visible=True)]+ [gr.update(visible=False)]+[gr.update(visible=True)]+[gr.update(visible=False)]*2 + [None, None, None]+[gr.update(visible=False)]*3
return [gr.update(visible=False)]*4 + [gr.update(visible=True)]+ [gr.update(visible=False)]+[gr.update(visible=True)]+[gr.update(visible=False)]*2 + [None, None, None]+[gr.update(visible=False)]
def get_click_prompt(chat_input, click_state, click_mode):
inputs = json.loads(chat_input)
if click_mode == 'Continuous':
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
elif click_mode == 'Single':
points = []
labels = []
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
else:
raise NotImplementedError
prompt = {
"prompt_type": ["click"],
"input_point": click_state[0],
"input_label": click_state[1],
"multimask_output": "True",
}
return prompt
def update_click_state(click_state, caption, click_mode):
if click_mode == 'Continuous':
click_state[2].append(caption)
elif click_mode == 'Single':
click_state[2] = [caption]
else:
raise NotImplementedError
async def chat_input_callback(*args):
visual_chatgpt, chat_input, click_state, state, aux_state ,language , autoplay = args
message = chat_input["text"]
if visual_chatgpt is not None:
state, _, aux_state, _ = visual_chatgpt.run_text(message, state, aux_state)
last_text, last_response = state[-1]
print("last response",last_response)
if autoplay==False:
return state, state, aux_state, None
else:
audio = await texttospeech(last_response,language,autoplay)
return state, state, aux_state, audio
else:
response = "Text refiner is not initilzed, please input openai api key."
state = state + [(chat_input, response)]
audio = await texttospeech(response,language,autoplay)
return state, state, None, audio
def upload_callback(image_input, state, visual_chatgpt=None, openai_api_key=None,language="English",narritive=None):
print("narritive", narritive)
if isinstance(image_input, dict): # if upload from sketcher_input, input contains image and mask
image_input = image_input['background']
if isinstance(image_input, str):
image_input = Image.open(io.BytesIO(base64.b64decode(image_input)))
elif isinstance(image_input, bytes):
image_input = Image.open(io.BytesIO(image_input))
click_state = [[], [], []]
image_input = image_resize(image_input, res=1024)
model = build_caption_anything_with_models(
args,
api_key="",
captioner=shared_captioner,
sam_model=shared_sam_model,
ocr_reader=shared_ocr_reader,
session_id=iface.app_id
)
model.segmenter.set_image(image_input)
image_embedding = model.image_embedding
original_size = model.original_size
input_size = model.input_size
if visual_chatgpt is not None:
print('upload_callback: add caption to chatGPT memory')
new_image_path = get_new_image_name('chat_image', func_name='upload')
image_input.save(new_image_path)
visual_chatgpt.current_image = new_image_path
paragraph = get_gpt_response(openai_api_key, new_image_path,f"What's going on in this picture? in {language}")
# img_caption = model.captioner.inference(image_input, filter=False, args={'text_prompt':''})['caption']
Human_prompt = f'\nHuman: The description of the image with path {new_image_path} is: {paragraph}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
AI_prompt = "Received."
visual_chatgpt.global_prompt = Human_prompt + 'AI: ' + AI_prompt
visual_chatgpt.agent.memory.save_context({"input": Human_prompt}, {"output": AI_prompt})
print("memory",visual_chatgpt.agent.memory)
# visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + visual_chatgpt.global_prompt
parsed_data = get_gpt_response(openai_api_key, new_image_path,"Please provide the name, artist, year of creation (including the art historical period), and painting style used for this painting. Return the information in dictionary format without any newline characters. If any information is unavailable, return \"None\" for that field. Format as follows: { \"name\": \"Name of the painting\", \"artist\": \"Name of the artist\", \"year\": \"Year of creation (Art historical period)\", \"style\": \"Painting style used in the painting\" }")
parsed_data = json.loads(parsed_data.replace("'", "\""))
name, artist, year, material= parsed_data["name"],parsed_data["artist"],parsed_data["year"], parsed_data["style"]
# artwork_info = f"<div>Painting: {name}<br>Artist name: {artist}<br>Year: {year}<br>Material: {material}</div>"
if narritive==None or narritive=="Third":
state = [
(
None,
f"🤖 Hi, I am EyeSee. Let's explore this painting '{name}' together. You can click on the area you're interested in and choose from four types of information: Description, Analysis, Interpretation, and Judgment. Based on your selection, I will provide you with the relevant information."
)
]
elif narritive=="Artist":
state = [
(
None,
f"🧑🎨 Hello, I am the {artist}. Welcome to explore my painting, '{name}'. You can click on the area you're interested in and choose from four types of information: Description, Analysis, Interpretation, and Judgment. Based on your selection, I will provide you with the relevant insights and thoughts behind my creation."
)
]
elif narritive=="Item":
state = [
(
None,
f"🎨 Hello, I am the Item. Let's explore this painting '{name}' together. You can click on the area you're interested in and choose from four types of information: Description, Analysis, Interpretation, and Judgment. Based on your selection, I will provide you with the relevant insights and thoughts behind my creation."
)
]
return [state, state, image_input, click_state, image_input, image_input, image_input, image_input, image_embedding, \
original_size, input_size] + [f"Name: {name}", f"Artist: {artist}", f"Year: {year}", f"Style: {material}"]*4 + [paragraph,artist]
def inference_click(image_input, point_prompt, click_mode, enable_wiki, language, sentiment, factuality,
length, image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state, evt: gr.SelectData):
click_index = evt.index
if point_prompt == 'Positive':
coordinate = "[[{}, {}, 1]]".format(str(click_index[0]), str(click_index[1]))
else:
coordinate = "[[{}, {}, 0]]".format(str(click_index[0]), str(click_index[1]))
prompt = get_click_prompt(coordinate, click_state, click_mode)
input_points = prompt['input_point']
input_labels = prompt['input_label']
controls = {'length': length,
'sentiment': sentiment,
'factuality': factuality,
'language': language}
model = build_caption_anything_with_models(
args,
api_key="",
captioner=shared_captioner,
sam_model=shared_sam_model,
ocr_reader=shared_ocr_reader,
text_refiner=text_refiner,
session_id=iface.app_id
)
model.setup(image_embedding, original_size, input_size, is_image_set=True)
enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False
out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki, verbose=True, args={'clip_filter': False})[0]
state = state + [("You've selected image point at {}, ".format(prompt["input_point"]), None)]
# state = state + [("Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]), None)]
update_click_state(click_state, out['generated_captions']['raw_caption'], click_mode)
text = out['generated_captions']['raw_caption']
input_mask = np.array(out['mask'].convert('P'))
image_input_nobackground = mask_painter(np.array(image_input), input_mask,background_alpha=0)
image_input_withbackground=mask_painter(np.array(image_input), input_mask)
click_index_state = click_index
input_mask_state = input_mask
input_points_state = input_points
input_labels_state = input_labels
out_state = out
if visual_chatgpt is not None:
print('inference_click: add caption to chatGPT memory')
new_crop_save_path = get_new_image_name('chat_image', func_name='crop')
Image.open(out["crop_save_path"]).save(new_crop_save_path)
point_prompt = f'You should primarly use tools on the selected regional image (description: {text}, path: {new_crop_save_path}), which is a part of the whole image (path: {visual_chatgpt.current_image}). If human mentioned some objects not in the selected region, you can use tools on the whole image.'
visual_chatgpt.point_prompt = point_prompt
print("new crop save",new_crop_save_path)
yield state, state, click_state, image_input_nobackground, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,new_crop_save_path,image_input_nobackground
query_focus = {
"D": "Provide a description of the item.",
"DA": "Provide a description and analysis of the item.",
"DAI": "Provide a description, analysis, and interpretation of the item.",
"DDA": "Evaluate the item."
}
async def submit_caption(state,length, sentiment, factuality, language,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
autoplay,paragraph,focus_type,openai_api_key,new_crop_save_path):
state = state + [(query_focus[focus_type], None)]
click_index = click_index_state
# if pre_click_index==click_index:
# click_index = (click_index[0] - 1, click_index[1] - 1)
# pre_click_index = click_index
# else:
# pre_click_index = click_index
print("click_index",click_index)
print("input_points_state",input_points_state)
print("input_labels_state",input_labels_state)
prompt=generate_prompt(focus_type,paragraph,length,sentiment,factuality,language)
print("Prompt:", prompt)
print("click",click_index)
# image_input = create_bubble_frame(np.array(image_input), generated_caption, click_index, input_mask,
# input_points=input_points, input_labels=input_labels)
# if not args.disable_gpt and text_refiner:
if not args.disable_gpt:
print("new crop save",new_crop_save_path)
focus_info=get_gpt_response(openai_api_key,new_crop_save_path,prompt)
if focus_info.startswith('"') and focus_info.endswith('"'):
focus_info=focus_info[1:-1]
focus_info=focus_info.replace('#', '')
# state = state + [(None, f"Wiki: {paragraph}")]
state = state + [(None, f"{focus_info}")]
print("new_cap",focus_info)
read_info = re.sub(r'[#[\]!*]','',focus_info)
read_info = emoji.replace_emoji(read_info,replace="")
print("read info",read_info)
# refined_image_input = create_bubble_frame(np.array(origin_image_input), focus_info, click_index, input_mask,
# input_points=input_points, input_labels=input_labels)
try:
if autoplay==False:
return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None
audio_output = await texttospeech(read_info, language, autoplay)
print("done")
# return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, audio_output
except Exception as e:
state = state + [(None, f"Error during TTS prediction: {str(e)}")]
print(f"Error during TTS prediction: {str(e)}")
# return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None, None
return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, audio_output
else:
state = state + [(None, f"Error during TTS prediction: {str(e)}")]
print(f"Error during TTS prediction: {str(e)}")
return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None
def generate_prompt(focus_type, paragraph,length, sentiment, factuality, language):
mapped_value = focus_map.get(focus_type, -1)
controls = {
'length': length,
'sentiment': sentiment,
'factuality': factuality,
'language': language
}
if mapped_value != -1:
prompt = prompt_list[mapped_value].format(
Wiki_caption=paragraph,
length=controls['length'],
sentiment=controls['sentiment'],
language=controls['language']
)
else:
prompt = "Invalid focus type."
if controls['factuality'] == "Imagination":
prompt += " Assuming that I am someone who has viewed a lot of art and has a lot of experience viewing art. Explain artistic features (composition, color, style, or use of light) and discuss the symbolism of the content and its influence on later artistic movements."
return prompt
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def get_gpt_response(api_key, image_path, prompt, enable_wiki=None):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
if image_path:
base64_image = encode_image(image_path)
payload = {
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
],
"max_tokens": 300
}
else:
payload = {
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
}
]
}
],
"max_tokens": 300
}
# Sending the request to the OpenAI API
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
result = response.json()
try:
content = result['choices'][0]['message']['content']
return content
except (KeyError, IndexError, json.JSONDecodeError) as e:
return json.dumps({"error": "Failed to parse model output", "details": str(e)})
def get_sketch_prompt(mask: Image.Image):
"""
Get the prompt for the sketcher.
TODO: This is a temporary solution. We should cluster the sketch and get the bounding box of each cluster.
"""
mask = np.asarray(mask)[..., 0]
# Get the bounding box of the sketch
y, x = np.where(mask != 0)
x1, y1 = np.min(x), np.min(y)
x2, y2 = np.max(x), np.max(y)
prompt = {
'prompt_type': ['box'],
'input_boxes': [
[x1, y1, x2, y2]
]
}
return prompt
submit_traj=0
async def inference_traject(origin_image,sketcher_image, enable_wiki, language, sentiment, factuality, length, image_embedding, state,
original_size, input_size, text_refiner,focus_type,paragraph,openai_api_key,autoplay,trace_type):
image_input, mask = sketcher_image['background'], sketcher_image['layers'][0]
crop_save_path=""
prompt = get_sketch_prompt(mask)
boxes = prompt['input_boxes']
boxes = boxes[0]
controls = {'length': length,
'sentiment': sentiment,
'factuality': factuality,
'language': language}
model = build_caption_anything_with_models(
args,
api_key="",
captioner=shared_captioner,
sam_model=shared_sam_model,
ocr_reader=shared_ocr_reader,
text_refiner=text_refiner,
session_id=iface.app_id
)
model.setup(image_embedding, original_size, input_size, is_image_set=True)
enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False
out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki,verbose=True)[0]
print(trace_type)
if trace_type=="Trace+Seg":
input_mask = np.array(out['mask'].convert('P'))
image_input = mask_painter(np.array(image_input), input_mask, background_alpha=0)
d3_input=mask_painter(np.array(image_input), input_mask)
crop_save_path=out['crop_save_path']
else:
image_input = Image.fromarray(np.array(origin_image))
draw = ImageDraw.Draw(image_input)
draw.rectangle(boxes, outline='red', width=2)
d3_input=image_input
cropped_image = origin_image.crop(boxes)
cropped_image.save('temp.png')
crop_save_path='temp.png'
print("crop_svae_path",out['crop_save_path'])
# Update components and states
state.append((f'Box: {boxes}', None))
# fake_click_index = (int((boxes[0][0] + boxes[0][2]) / 2), int((boxes[0][1] + boxes[0][3]) / 2))
# image_input = create_bubble_frame(image_input, "", fake_click_index, input_mask)
prompt=generate_prompt(focus_type, paragraph, length, sentiment, factuality, language)
# if not args.disable_gpt and text_refiner:
if not args.disable_gpt:
focus_info=get_gpt_response(openai_api_key,crop_save_path,prompt)
if focus_info.startswith('"') and focus_info.endswith('"'):
focus_info=focus_info[1:-1]
focus_info=focus_info.replace('#', '')
state = state + [(None, f"{focus_info}")]
print("new_cap",focus_info)
read_info = re.sub(r'[#[\]!*]','',focus_info)
read_info = emoji.replace_emoji(read_info,replace="")
print("read info",read_info)
# refined_image_input = create_bubble_frame(np.array(origin_image_input), focus_info, click_index, input_mask,
# input_points=input_points, input_labels=input_labels)
try:
audio_output = await texttospeech(read_info, language,autoplay)
# return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
return state, state,image_input,audio_output,crop_save_path,d3_input
except Exception as e:
state = state + [(None, f"Error during TTS prediction: {str(e)}")]
print(f"Error during TTS prediction: {str(e)}")
# return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None, None
return state, state, image_input,audio_output,crop_save_path
else:
try:
audio_output = await texttospeech(focus_info, language, autoplay)
# waveform_visual, audio_output = tts.predict(generated_caption, input_language, input_audio, input_mic, use_mic, agree)
# return state, state, image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
return state, state, image_input,audio_output
except Exception as e:
state = state + [(None, f"Error during TTS prediction: {str(e)}")]
print(f"Error during TTS prediction: {str(e)}")
return state, state, image_input,audio_output
def clear_chat_memory(visual_chatgpt, keep_global=False):
if visual_chatgpt is not None:
visual_chatgpt.memory.clear()
visual_chatgpt.point_prompt = ""
if keep_global:
# visual_chatgpt.agent.memory.buffer = visual_chatgpt.global_prompt
visual_chatgpt.agent.memory.save_context({"input": visual_chatgpt.global_prompt}, {"output": ""})
else:
visual_chatgpt.current_image = None
visual_chatgpt.global_prompt = ""
def export_chat_log(chat_state, paragraph, liked, disliked):
try:
if not chat_state:
return None
chat_log = f"Image Description: {paragraph}\n\n"
for entry in chat_state:
user_message, bot_response = entry
if user_message and bot_response:
chat_log += f"User: {user_message}\nBot: {bot_response}\n"
elif user_message:
chat_log += f"User: {user_message}\n"
elif bot_response:
chat_log += f"Bot: {bot_response}\n"
# 添加 liked 和 disliked 信息
chat_log += "\nLiked Responses:\n"
for response in liked:
chat_log += f"{response}\n"
chat_log += "\nDisliked Responses:\n"
for response in disliked:
chat_log += f"{response}\n"
print("export log...")
print("chat_log", chat_log)
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
temp_file.write(chat_log.encode('utf-8'))
temp_file_path = temp_file.name
print(temp_file_path)
return temp_file_path
except Exception as e:
print(f"An error occurred while exporting the chat log: {e}")
return None
async def get_artistinfo(artist_name,api_key,state,language,autoplay,length):
prompt=f"Provide a concise summary of about {length} words in {language} on the painter {artist_name}, covering his biography, major works, artistic style, significant contributions to the art world, and any major awards or recognitions he has received."
res=get_gpt_response(api_key,None,prompt)
state = state + [(None, f"Artist Background:{res}")]
read_info = re.sub(r'[#[\]!*]','',res)
read_info = emoji.replace_emoji(read_info,replace="")
# refined_image_input = create_bubble_frame(np.array(origin_image_input), focus_info, click_index, input_mask,
# input_points=input_points, input_labels=input_labels)
audio_output = await texttospeech(read_info, language,autoplay)
# return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
return state, state,audio_output
async def get_yearinfo(year,api_key,state,language,autoplay,length):
prompt = f"Provide a concise summary of about {length} words in {language} on the art historical period associated with the year {year}, covering its major characteristics, influential artists, notable works, and its significance in the broader context of art history."
res=get_gpt_response(api_key,None,prompt)
state = state + [(None, f"History Background: {res}")]
read_info = re.sub(r'[#[\]!*]','',res)
read_info = emoji.replace_emoji(read_info,replace="")
# refined_image_input = create_bubble_frame(np.array(origin_image_input), focus_info, click_index, input_mask,
# input_points=input_points, input_labels=input_labels)
audio_output = await texttospeech(read_info, language,autoplay)
# return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
return state, state,audio_output
async def cap_everything(paragraph, visual_chatgpt,language,autoplay):
# state = state + [(None, f"Caption Everything: {paragraph}")]
Human_prompt = f'\nThe description of the image with path {visual_chatgpt.current_image} is:\n{paragraph}\nThis information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
AI_prompt = "Received."
visual_chatgpt.global_prompt = Human_prompt + 'AI: ' + AI_prompt
# visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + visual_chatgpt.global_prompt
visual_chatgpt.agent.memory.save_context({"input": Human_prompt}, {"output": AI_prompt})
# waveform_visual, audio_output=tts.predict(paragraph, input_language, input_audio, input_mic, use_mic, agree)
audio_output=await texttospeech(paragraph,language,autoplay)
return paragraph,audio_output
def cap_everything_withoutsound(image_input, visual_chatgpt, text_refiner,paragraph):
model = build_caption_anything_with_models(
args,
api_key="",
captioner=shared_captioner,
sam_model=shared_sam_model,
ocr_reader=shared_ocr_reader,
text_refiner=text_refiner,
session_id=iface.app_id
)
paragraph = model.inference_cap_everything(image_input, verbose=True)
# state = state + [(None, f"Caption Everything: {paragraph}")]
Human_prompt = f'\nThe description of the image with path {visual_chatgpt.current_image} is:\n{paragraph}\nThis information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
AI_prompt = "Received."
visual_chatgpt.global_prompt = Human_prompt + 'AI: ' + AI_prompt
visual_chatgpt.agent.memory.save_context({"input": Human_prompt}, {"output": AI_prompt})
# visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + visual_chatgpt.global_prompt
return paragraph
# def handle_liked(state,like_res):
# if state:
# like_res.append(state[-1][1])
# print(f"Last response recorded: {state[-1][1]}")
# else:
# print("No response to record.")
# state = state + [(None, f"Liked Received 👍")]
# return state,like_res
# def handle_disliked(state,dislike_res):
# if state:
# dislike_res.append(state[-1][1])
# print(f"Last response recorded: {state[-1][1]}")
# else:
# print("No response to record.")
# state = state + [(None, f"Disliked Received 🥹")]
# return state,dislike_res
# def get_style():
# current_version = version.parse(gr.__version__)
# print(current_version)
# if current_version <= version.parse('3.24.1'):
# style = '''
# #image_sketcher{min-height:500px}
# #image_sketcher [data-testid="image"], #image_sketcher [data-testid="image"] > div{min-height: 500px}
# #image_upload{min-height:500px}
# #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 500px}
# .custom-language {
# width: 20%;
# }
# .custom-autoplay {
# width: 40%;
# }
# .custom-output {
# width: 30%;
# }
# '''
# elif current_version <= version.parse('3.27'):
# style = '''
# #image_sketcher{min-height:500px}
# #image_upload{min-height:500px}
# .custom-language {
# width: 20%;
# }
# .custom-autoplay {
# width: 40%;
# }
# .custom-output {
# width: 30%;
# }
# .custom-gallery {
# display: flex;
# flex-wrap: wrap;
# justify-content: space-between;
# }
# .custom-gallery img {
# width: 48%;
# margin-bottom: 10px;
# }
# '''
# else:
# style = None
# return style
# def handle_like_dislike(like_data, like_state, dislike_state):
# if like_data.liked:
# if like_data.index not in like_state:
# like_state.append(like_data.index)
# message = f"Liked: {like_data.value} at index {like_data.index}"
# else:
# message = "You already liked this item"
# else:
# if like_data.index not in dislike_state:
# dislike_state.append(like_data.index)
# message = f"Disliked: {like_data.value} at index {like_data.index}"
# else:
# message = "You already disliked this item"
# return like_state, dislike_state
async def texttospeech(text, language, autoplay):
try:
if autoplay:
voice = filtered_language_dict[language]
communicate = edge_tts.Communicate(text, voice)
file_path = "output.wav"
await communicate.save(file_path)
with open(file_path, "rb") as audio_file:
audio_bytes = BytesIO(audio_file.read())
audio = base64.b64encode(audio_bytes.read()).decode("utf-8")
print("TTS processing completed.")
audio_style = 'style="width:210px;"'
audio_player = f'<audio src="data:audio/wav;base64,{audio}" controls autoplay {audio_style}></audio>'
else:
audio_player = None
print("Autoplay is disabled.")
return audio_player
except Exception as e:
print(f"Error in texttospeech: {e}")
return None
def print_like_dislike(x: gr.LikeData,like_res,dislike_res,state):
print(x.index, x.value, x.liked)
if x.liked == True:
print("liked")
like_res.append(x.value)
print(like_res)
state = state + [(None, f"Liked Received 👍")]
else:
dislike_res.append(x.value)
state = state + [(None, f"Disliked Received 👎")]
return like_res,dislike_res,state
def toggle_icons_and_update_prompt(point_prompt):
new_prompt = "Negative" if point_prompt == "Positive" else "Positive"
new_add_icon = "assets/icons/plus-square-blue.png" if new_prompt == "Positive" else "assets/icons/plus-square.png"
new_minus_icon = "assets/icons/minus-square.png" if new_prompt == "Positive" else "assets/icons/minus-square-blue.png"
print(point_prompt,flush=True)
print(new_prompt,flush=True)
return new_prompt, gr.update(icon=new_add_icon), gr.update(icon=new_minus_icon)
add_icon_path="assets/icons/plus-square-blue.png"
minus_icon_path="assets/icons/minus-square.png"
print("this is a print test")
def create_ui():
print(6)
title = """<p><h1 align="center">EyeSee Anything in Art</h1></p>
"""
description = """<p>Gradio demo for EyeSee Anything in Art, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. """
examples = [
["test_images/ambass.jpg"],
["test_images/pearl.jpg"],
["test_images/Picture0.png"],
["test_images/Picture1.png"],
["test_images/Picture2.png"],
["test_images/Picture3.png"],
["test_images/Picture4.png"],
["test_images/Picture5.png"],
]
with gr.Blocks(
css=css,
theme=gr.themes.Base()
) as iface:
state = gr.State([])
out_state = gr.State(None)
click_state = gr.State([[], [], []])
origin_image = gr.State(None)
image_embedding = gr.State(None)
text_refiner = gr.State(None)
visual_chatgpt = gr.State(None)
original_size = gr.State(None)
input_size = gr.State(None)
paragraph = gr.State("")
aux_state = gr.State([])
click_index_state = gr.State((0, 0))
input_mask_state = gr.State(np.zeros((1, 1)))
input_points_state = gr.State([])
input_labels_state = gr.State([])
new_crop_save_path = gr.State(None)
image_input_nobackground = gr.State(None)
artist=gr.State(None)
like_res=gr.State([])
dislike_res=gr.State([])
gr.Markdown(title)
gr.Markdown(description)
point_prompt = gr.State("Positive")
# with gr.Row(align="right", visible=False, elem_id="top_row") as top_row:
# with gr.Column(scale=0.5):
# # gr.Markdown("Left side content")
# with gr.Column(scale=0.5):
# with gr.Row(align="right",visible=False) as language_select:
# language = gr.Dropdown(
# ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"],
# value="English", label="Language", interactive=True)
# with gr.Row(align="right",visible=False) as autoplay:
# auto_play = gr.Checkbox(label="Check to autoplay audio", value=False,scale=0.4)
# output_audio = gr.HTML(label="Synthesised Audio",scale=0.6)
with gr.Row(visible=False, elem_id="top_row") as top_row:
language = gr.Dropdown(
['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"],
value="English", label="Language", interactive=True, elem_classes="custom-language"
)
length = gr.Slider(
minimum=40,
maximum=200,
value=80,
step=1,
interactive=True,
label="Generated Caption Length",
)
auto_play = gr.Checkbox(
label="Check to autoplay audio", value=False, elem_classes="custom-autoplay"
)
output_audio = gr.HTML(
label="Synthesised Audio", elem_classes="custom-output"
)
# with gr.Row(align="right",visible=False) as language_select:
# language = gr.Dropdown(
# ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"],
# value="English", label="Language", interactive=True)
# with gr.Row(align="right",visible=False) as autoplay:
# auto_play = gr.Checkbox(label="Check to autoplay audio", value=False,scale=0.4)
# output_audio = gr.HTML(label="Synthesised Audio",scale=0.6)
with gr.Row():
with gr.Column(scale=6):
with gr.Column(visible=False) as modules_not_need_gpt:
with gr.Tab("Base(GPT Power)") as base_tab:
image_input_base = gr.Image(type="pil", interactive=True, elem_id="image_upload")
with gr.Row():
name_label_base = gr.Button(value="Name: ",elem_classes="info_btn")
artist_label_base = gr.Button(value="Artist: ",elem_classes="info_btn")
year_label_base = gr.Button(value="Year: ",elem_classes="info_btn")
material_label_base = gr.Button(value="Style: ",elem_classes="info_btn")
with gr.Tab("Base2") as base_tab2:
image_input_base_2 = gr.Image(type="pil", interactive=True, elem_id="image_upload")
with gr.Row():
name_label_base2 = gr.Button(value="Name: ",elem_classes="info_btn")
artist_label_base2 = gr.Button(value="Artist: ",elem_classes="info_btn")
year_label_base2 = gr.Button(value="Year: ",elem_classes="info_btn")
material_label_base2 = gr.Button(value="Style: ",elem_classes="info_btn")
with gr.Tab("Click") as click_tab:
with gr.Row():
with gr.Column(scale=10,min_width=600):
image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload")
example_image = gr.Image(type="pil", interactive=False, visible=False)
with gr.Row():
name_label = gr.Button(value="Name: ",elem_classes="info_btn")
artist_label = gr.Button(value="Artist: ",elem_classes="info_btn")
year_label = gr.Button(value="Year: ",elem_classes="info_btn")
material_label = gr.Button(value="Style: ",elem_classes="info_btn")
# example_image_click = gr.Image(type="pil", interactive=False, visible=False)
# the tool column
with gr.Column(scale=1,elem_id="tool_box",min_width=80):
add_button = gr.Button(value="", interactive=True,elem_classes="tools_button",icon=add_icon_path)
minus_button = gr.Button(value="", interactive=True,elem_classes="tools_button",icon=minus_icon_path)
clear_button_click = gr.Button(value="Reset", interactive=True,elem_classes="tools_button")
clear_button_image = gr.Button(value="Change", interactive=True,elem_classes="tools_button")
focus_d = gr.Button(value="D",interactive=True,elem_classes="function_button")
focus_da = gr.Button(value="DA",interactive=True,elem_classes="function_button")
focus_dai = gr.Button(value="DAI",interactive=True,elem_classes="function_button")
focus_dda = gr.Button(value="DDA",interactive=True,elem_classes="function_button")
recommend_btn = gr.Button(value="Recommend",interactive=True,elem_classes="function_button")
with gr.Row(visible=False):
with gr.Column():
with gr.Row():
# point_prompt = gr.Radio(
# choices=["Positive", "Negative"],
# value="Positive",
# label="Point Prompt",
# scale=5,
# interactive=True)
click_mode = gr.Radio(
choices=["Continuous", "Single"],
value="Continuous",
label="Clicking Mode",
scale=5,
interactive=True)
with gr.Tab("Trajectory (beta)", visible=False) as traj_tab:
# sketcher_input = ImageSketcher(type="pil", interactive=True, brush_radius=10,
# elem_id="image_sketcher")
sketcher_input = gr.ImageEditor(type="pil", interactive=True
)
with gr.Row():
name_label_traj = gr.Button(value="Name: ")
artist_label_traj = gr.Button(value="Artist: ")
year_label_traj = gr.Button(value="Year: ")
material_label_traj = gr.Button(value="Material: ")
# example_image_traj = gr.Image(type="pil", interactive=False, visible=False)
with gr.Row():
clear_button_sketcher = gr.Button(value="Clear Sketch", interactive=True)
submit_button_sketcher = gr.Button(value="Submit", interactive=True)
with gr.Column(visible=False,scale=4) as modules_need_gpt1:
with gr.Row(visible=False):
sentiment = gr.Radio(
choices=["Positive", "Natural", "Negative"],
value="Natural",
label="Sentiment",
interactive=True,
)
factuality = gr.Radio(
choices=["Factual", "Imagination"],
value="Factual",
label="Factuality",
interactive=True,
)
# length = gr.Slider(
# minimum=10,
# maximum=80,
# value=10,
# step=1,
# interactive=True,
# label="Generated Caption Length",
# )
# 是否启用wiki内容整合到caption中
enable_wiki = gr.Radio(
choices=["Yes", "No"],
value="No",
label="Expert",
interactive=True)
with gr.Column(visible=True) as modules_not_need_gpt3:
gr.Examples(
examples=examples,
inputs=[example_image],
)
with gr.Column(scale=4):
with gr.Column(visible=True) as module_key_input:
openai_api_key = gr.Textbox(
placeholder="Input openAI API key",
show_label=False,
label="OpenAI API Key",
lines=1,
type="password")
with gr.Row():
enable_chatGPT_button = gr.Button(value="Run with ChatGPT", interactive=True, variant='primary')
disable_chatGPT_button = gr.Button(value="Run without ChatGPT (Faster)", interactive=True,
variant='primary')
with gr.Column(visible=False) as module_notification_box:
notification_box = gr.Textbox(lines=1, label="Notification", max_lines=5, show_label=False)
with gr.Column() as modules_need_gpt0:
with gr.Column(visible=False) as modules_need_gpt2:
paragraph_output = gr.Textbox(lines=16, label="Describe Everything", max_lines=16)
cap_everything_button = gr.Button(value="Caption Everything in a Paragraph", interactive=True)
with gr.Column(visible=False) as modules_not_need_gpt2:
with gr.Blocks():
chatbot = gr.Chatbot(label="Chatbox", elem_classes="chatbot",likeable=True,height=600,bubble_full_width=False)
with gr.Column(visible=False) as modules_need_gpt3:
chat_input = gr.MultimodalTextbox(interactive=True, file_types=[".txt"], placeholder="Message EyeSee...", show_label=False)
with gr.Row():
clear_button_text = gr.Button(value="Clear Chat", interactive=True)
export_button = gr.Button(value="Export Chat Log", interactive=True, variant="primary")
# submit_button_text = gr.Button(value="Send", interactive=True, variant="primary")
# upvote_btn = gr.Button(value="👍 Upvote", interactive=True)
# downvote_btn = gr.Button(value="👎 Downvote", interactive=True)
# TTS interface hidden initially
with gr.Column(visible=False) as tts_interface:
input_text = gr.Textbox(label="Text Prompt", value="Hello, World !, here is an example of light voice cloning. Try to upload your best audio samples quality")
input_language = gr.Dropdown(label="Language", choices=["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn"], value="en")
input_audio = gr.Audio(label="Reference Audio", type="filepath", value="examples/female.wav")
input_mic = gr.Audio(sources="microphone", type="filepath", label="Use Microphone for Reference")
use_mic = gr.Checkbox(label="Check to use Microphone as Reference", value=False)
agree = gr.Checkbox(label="Agree", value=True)
output_waveform = gr.Video(label="Waveform Visual")
# output_audio = gr.HTML(label="Synthesised Audio")
with gr.Row():
submit_tts = gr.Button(value="Submit", interactive=True)
clear_tts = gr.Button(value="Clear", interactive=True)
###############################################################################
############# this part is for text to image #############
###############################################################################
with gr.Row(variant="panel") as text2image_model:
with gr.Column():
with gr.Column():
gr.Radio(["Other Paintings by the Artist"], label="Artist", info="Who is the artist?🧑🎨"),
gr.Radio(["Oil Painting","Printmaking","Watercolor Painting","Drawing"], label="Art Forms", info="What are the art forms?🎨"),
gr.Radio(["Renaissance", "Baroque", "Impressionism","Modernism"], label="Period", info="Which art period?⏳"),
# to be done
gr.Dropdown(
["ran", "swam", "ate", "slept"], value=["swam", "slept"], multiselect=True, label="Items", info="Which items are you interested in?"
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
num_images = gr.Slider(
label="Number of Images",
minimum=1,
maximum=4,
step=1,
value=4,
)
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=100,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=100,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=6,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=15,
step=1,
value=8,
)
with gr.Column():
result = gr.Gallery(
label="Result",
height="auto",
columns=4
# columns=4,
# rows=2,
# show_label=False,
# allow_preview=True,
# object_fit="contain",
# height="auto",
# preview=True,
# show_share_button=True,
# show_download_button=True
)
with gr.Row():
naritive = gr.Radio(
choices=["Third", "Artist","Item"],
value="Third",
label="narritive",
scale=5,
interactive=True)
chat_log_file = gr.File(label="Download Chat Log",scale=5)
# gr.Examples(
# examples=examples,
# inputs=prompt,
# cache_examples=False
# )
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
# gr.on(
# triggers=[
# prompt.submit,
# negative_prompt.submit,
# run_button.click,
# ],
# fn=generate,
# inputs=[
# prompt,
# negative_prompt,
# use_negative_prompt,
# seed,
# width,
# height,
# guidance_scale,
# num_inference_steps,
# randomize_seed,
# num_images
# ],
# outputs=[result, seed],
# api_name="run",
# )
recommend_btn.click(
fn=infer,
inputs=[new_crop_save_path],
outputs=[result]
)
###############################################################################
############# above part is for text to image #############
###############################################################################
###############################################################################
# this part is for 3d generate.
###############################################################################
# with gr.Row(variant="panel",visible=False) as d3_model:
# with gr.Column():
# with gr.Row():
# input_image = gr.Image(
# label="Input Image",
# image_mode="RGBA",
# sources="upload",
# #width=256,
# #height=256,
# type="pil",
# elem_id="content_image",
# )
# processed_image = gr.Image(
# label="Processed Image",
# image_mode="RGBA",
# #width=256,
# #height=256,
# type="pil",
# interactive=False
# )
# with gr.Row():
# with gr.Group():
# do_remove_background = gr.Checkbox(
# label="Remove Background", value=True
# )
# sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
# sample_steps = gr.Slider(
# label="Sample Steps",
# minimum=30,
# maximum=75,
# value=75,
# step=5
# )
# with gr.Row():
# submit = gr.Button("Generate", elem_id="generate", variant="primary")
# with gr.Row(variant="panel"):
# gr.Examples(
# examples=[
# os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
# ],
# inputs=[input_image],
# label="Examples",
# cache_examples=False,
# examples_per_page=16
# )
# with gr.Column():
# with gr.Row():
# with gr.Column():
# mv_show_images = gr.Image(
# label="Generated Multi-views",
# type="pil",
# width=379,
# interactive=False
# )
# # with gr.Column():
# # output_video = gr.Video(
# # label="video", format="mp4",
# # width=379,
# # autoplay=True,
# # interactive=False
# # )
# with gr.Row():
# with gr.Tab("OBJ"):
# output_model_obj = gr.Model3D(
# label="Output Model (OBJ Format)",
# interactive=False,
# )
# gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
# with gr.Tab("GLB"):
# output_model_glb = gr.Model3D(
# label="Output Model (GLB Format)",
# interactive=False,
# )
# gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
# mv_images = gr.State()
# chatbot.like(print_like_dislike, inputs=[like_res,dislike_res,state], outputs=[like_res,dislike_res,chatbot])
# submit.click(fn=check_input_image, inputs=[new_crop_save_path], outputs=[processed_image]).success(
# fn=generate_mvs,
# inputs=[processed_image, sample_steps, sample_seed],
# outputs=[mv_images, mv_show_images]
# ).success(
# fn=make3d,
# inputs=[mv_images],
# outputs=[output_model_obj, output_model_glb]
# )
###############################################################################
# above part is for 3d generate.
###############################################################################
def clear_tts_fields():
return [gr.update(value=""), gr.update(value=""), None, None, gr.update(value=False), gr.update(value=True), None, None]
# submit_tts.click(
# tts.predict,
# inputs=[input_text, input_language, input_audio, input_mic, use_mic, agree],
# outputs=[output_waveform, output_audio],
# queue=True
# )
clear_tts.click(
clear_tts_fields,
inputs=None,
outputs=[input_text, input_language, input_audio, input_mic, use_mic, agree, output_waveform, output_audio],
queue=False
)
# clear_button_sketcher.click(
# lambda x: (x),
# [origin_image],
# [sketcher_input],
# queue=False,
# show_progress=False
# )
openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key],
outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt,
modules_not_need_gpt2, tts_interface,module_key_input ,module_notification_box, text_refiner, visual_chatgpt, notification_box,top_row])
enable_chatGPT_button.click(init_openai_api_key, inputs=[openai_api_key],
outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3,
modules_not_need_gpt,
modules_not_need_gpt2, tts_interface,module_key_input,module_notification_box, text_refiner, visual_chatgpt, notification_box,top_row])
# openai_api_key.submit(init_openai_api_key,
# outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt,
# modules_not_need_gpt2, tts_interface,module_key_input ,module_notification_box, text_refiner, visual_chatgpt, notification_box,d3_model,top_row])
# enable_chatGPT_button.click(init_openai_api_key,
# outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3,
# modules_not_need_gpt,
# modules_not_need_gpt2, tts_interface,module_key_input,module_notification_box, text_refiner, visual_chatgpt, notification_box,d3_model,top_row])
disable_chatGPT_button.click(init_wo_openai_api_key,
outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3,
modules_not_need_gpt,
modules_not_need_gpt2, tts_interface,module_key_input, module_notification_box, text_refiner, visual_chatgpt, notification_box,top_row])
artist_label_base2.click(
get_artistinfo,
inputs=[artist_label_base2,openai_api_key,state,language,auto_play,length],
outputs=[chatbot,state,output_audio]
)
artist_label.click(
get_artistinfo,
inputs=[artist_label,openai_api_key,state,language,auto_play,length],
outputs=[chatbot,state,output_audio]
)
artist_label_traj.click(
get_artistinfo,
inputs=[artist_label_traj,openai_api_key,state,language,auto_play,length],
outputs=[chatbot,state,output_audio]
)
year_label_base2.click(
get_yearinfo,
inputs=[year_label_base2,openai_api_key,state,language,auto_play,length],
outputs=[chatbot,state,output_audio]
)
year_label.click(
get_yearinfo,
inputs=[year_label,openai_api_key,state,language,auto_play,length],
outputs=[chatbot,state,output_audio]
)
year_label_traj.click(
get_yearinfo,
inputs=[year_label_traj,openai_api_key,state,language,auto_play,length],
outputs=[chatbot,state,output_audio]
)
enable_chatGPT_button.click(
lambda: (None, [], [], [[], [], []], "", "", ""),
[],
[image_input, chatbot, state, click_state, paragraph_output, origin_image],
queue=False,
show_progress=False
)
openai_api_key.submit(
lambda: (None, [], [], [[], [], []], "", "", ""),
[],
[image_input, chatbot, state, click_state, paragraph_output, origin_image],
queue=False,
show_progress=False
)
cap_everything_button.click(cap_everything, [paragraph, visual_chatgpt, language,auto_play],
[paragraph_output,output_audio])
clear_button_click.click(
lambda x: ([[], [], []], x),
[origin_image],
[click_state, image_input],
queue=False,
show_progress=False
)
clear_button_click.click(functools.partial(clear_chat_memory, keep_global=True), inputs=[visual_chatgpt])
clear_button_image.click(
lambda: (None, [], [], [[], [], []], "", "", ""),
[],
[image_input, chatbot, state, click_state, paragraph_output, origin_image],
queue=False,
show_progress=False
)
clear_button_image.click(clear_chat_memory, inputs=[visual_chatgpt])
clear_button_text.click(
lambda: ([], [], [[], [], [], []]),
[],
[chatbot, state, click_state],
queue=False,
show_progress=False
)
clear_button_text.click(clear_chat_memory, inputs=[visual_chatgpt])
image_input.clear(
lambda: (None, [], [], [[], [], []], "", "", ""),
[],
[image_input, chatbot, state, click_state, paragraph_output, origin_image],
queue=False,
show_progress=False
)
image_input.clear(clear_chat_memory, inputs=[visual_chatgpt])
image_input_base.upload(upload_callback, [image_input_base, state, visual_chatgpt,openai_api_key,language,naritive],
[chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,image_input_base_2,
image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base, \
name_label_base2, artist_label_base2, year_label_base2, material_label_base2,name_label_traj, artist_label_traj, year_label_traj, material_label_traj, \
paragraph,artist])
# image_input_base_2.upload(upload_callback, [image_input_base_2, state, visual_chatgpt,openai_api_key],
# [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,image_input_base_2,
# image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base, \
# name_label_base2, artist_label_base2, year_label_base2, material_label_base2,name_label_traj, artist_label_traj, year_label_traj, material_label_traj, \
# paragraph,artist])
# image_input.upload(upload_callback, [image_input, state, visual_chatgpt,openai_api_key],
# [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,image_input_base_2,
# image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base, \
# name_label_base2, artist_label_base2, year_label_base2, material_label_base2,name_label_traj, artist_label_traj, year_label_traj, material_label_traj, \
# paragraph,artist])
# sketcher_input.upload(upload_callback, [sketcher_input, state, visual_chatgpt,openai_api_key],
# [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,image_input_base_2,
# image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base, \
# name_label_base2, artist_label_base2, year_label_base2, material_label_base2,name_label_traj, artist_label_traj, year_label_traj, material_label_traj, \
# paragraph,artist])
# image_input.upload(upload_callback, [image_input, state, visual_chatgpt, openai_api_key],
# [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,
# image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base,paragraph,artist])
# sketcher_input.upload(upload_callback, [sketcher_input, state, visual_chatgpt, openai_api_key],
# [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,
# image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base,paragraph,artist])
chat_input.submit(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state,language,auto_play],
[chatbot, state, aux_state,output_audio])
# chat_input.submit(lambda: "", None, chat_input)
chat_input.submit(lambda: {"text": ""}, None, chat_input)
# submit_button_text.click(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state,language,auto_play],
# [chatbot, state, aux_state,output_audio])
# submit_button_text.click(lambda: "", None, chat_input)
example_image.change(upload_callback, [example_image, state, visual_chatgpt, openai_api_key,language,naritive],
[chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,image_input_base_2,
image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base, \
name_label_base2, artist_label_base2, year_label_base2, material_label_base2,name_label_traj, artist_label_traj, year_label_traj, material_label_traj, \
paragraph,artist])
example_image.change(clear_chat_memory, inputs=[visual_chatgpt])
def on_click_tab_selected():
if gpt_state ==1:
print(gpt_state)
print("using gpt")
return [gr.update(visible=True)]*2+[gr.update(visible=False)]*2
else:
print("no gpt")
print("gpt_state",gpt_state)
return [gr.update(visible=False)]+[gr.update(visible=True)]+[gr.update(visible=False)]*2
def on_base_selected():
if gpt_state ==1:
print(gpt_state)
print("using gpt")
return [gr.update(visible=True)]*2+[gr.update(visible=False)]*2
else:
print("no gpt")
return [gr.update(visible=False)]*4
traj_tab.select(on_click_tab_selected, outputs=[modules_need_gpt1,modules_not_need_gpt2,modules_need_gpt0,modules_need_gpt2])
click_tab.select(on_click_tab_selected, outputs=[modules_need_gpt1,modules_not_need_gpt2,modules_need_gpt0,modules_need_gpt2])
base_tab.select(on_base_selected, outputs=[modules_need_gpt0,modules_need_gpt2,modules_not_need_gpt2,modules_need_gpt1])
base_tab2.select(on_base_selected, outputs=[modules_not_need_gpt2,modules_not_need_gpt2,modules_need_gpt0,modules_need_gpt1])
image_input.select(
inference_click,
inputs=[
origin_image, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length,
image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
],
outputs=[chatbot, state, click_state, image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,new_crop_save_path,image_input_nobackground],
show_progress=False, queue=True
)
focus_d.click(
submit_caption,
inputs=[
state,length, sentiment, factuality, language,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state, auto_play, paragraph,focus_d,openai_api_key,new_crop_save_path
],
outputs=[
chatbot, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,output_audio
],
show_progress=True,
queue=True
)
focus_da.click(
submit_caption,
inputs=[
state,length, sentiment, factuality, language,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,auto_play, paragraph,focus_da,openai_api_key,new_crop_save_path
],
outputs=[
chatbot, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,output_audio
],
show_progress=True,
queue=True
)
focus_dai.click(
submit_caption,
inputs=[
state,length, sentiment, factuality, language,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
auto_play, paragraph,focus_dai,openai_api_key,new_crop_save_path
],
outputs=[
chatbot, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,output_audio
],
show_progress=True,
queue=True
)
focus_dda.click(
submit_caption,
inputs=[
state,length, sentiment, factuality, language,
out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
auto_play, paragraph,focus_dda,openai_api_key,new_crop_save_path
],
outputs=[
chatbot, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,output_audio
],
show_progress=True,
queue=True
)
add_button.click(
toggle_icons_and_update_prompt,
inputs=[point_prompt],
outputs=[point_prompt,add_button,minus_button],
show_progress=True,
queue=True
)
minus_button.click(
toggle_icons_and_update_prompt,
inputs=[point_prompt],
outputs=[point_prompt,add_button,minus_button],
show_progress=True,
queue=True
)
# submit_button_sketcher.click(
# inference_traject,
# inputs=[
# origin_image,sketcher_input, enable_wiki, language, sentiment, factuality, length, image_embedding, state,
# original_size, input_size, text_refiner,focus_type_sketch,paragraph,openai_api_key,auto_play,Input_sketch
# ],
# outputs=[chatbot, state, sketcher_input,output_audio,new_crop_save_path],
# show_progress=False, queue=True
# )
export_button.click(
export_chat_log,
inputs=[state,paragraph,like_res,dislike_res],
outputs=[chat_log_file],
queue=True
)
# upvote_btn.click(
# handle_liked,
# inputs=[state,like_res],
# outputs=[chatbot,like_res]
# )
# downvote_btn.click(
# handle_disliked,
# inputs=[state,dislike_res],
# outputs=[chatbot,dislike_res]
# )
return iface
if __name__ == '__main__':
print("main")
iface = create_ui()
iface.queue(api_open=False, max_size=10)
# iface.queue(concurrency_count=5, api_open=False, max_size=10)
iface.launch(server_name="0.0.0.0",show_error=True) |