File size: 82,933 Bytes
2dc11df
 
ee87a3a
2dc11df
 
ee87a3a
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1292a4
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea9e97
2dc11df
 
 
 
2757a07
2dc11df
 
 
aea9e97
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757a07
2dc11df
 
 
2757a07
2dc11df
 
 
fa3069a
2dc11df
fa3069a
2dc11df
 
 
 
fa3069a
2dc11df
 
 
 
fa3069a
2dc11df
 
 
 
 
 
 
 
 
 
 
 
8dfaaf2
2dc11df
 
 
 
fa3069a
2dc11df
 
 
 
 
 
 
 
 
 
 
fa3069a
2dc11df
2f6a657
 
cf1091a
2dc11df
 
 
 
 
 
 
bd91fa9
5abd550
2dc11df
 
5abd550
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf1091a
ee87a3a
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ea9b8c
2dc11df
 
 
 
 
 
 
 
 
 
 
5abd550
2dc11df
c5a524a
 
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe62fc
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60d818
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60d818
 
 
 
 
 
 
 
 
 
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee87a3a
2dc11df
 
 
 
 
 
 
 
 
ee87a3a
2dc11df
 
 
 
 
 
 
 
 
6b3e32a
 
 
 
 
 
 
 
 
 
 
1552a49
6b3e32a
 
 
1552a49
 
 
d01447a
6b3e32a
 
8ed8e45
6b3e32a
 
8ed8e45
6b3e32a
 
cce94d8
6b3e32a
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
8ed8e45
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed8e45
 
2dc11df
 
 
 
 
8ed8e45
2dc11df
8ed8e45
 
2dc11df
 
 
 
 
 
 
 
 
 
8ed8e45
2dc11df
 
 
 
 
 
 
 
 
 
8ed8e45
 
2dc11df
 
 
 
 
 
 
 
 
 
 
 
8ed8e45
2dc11df
 
 
 
 
 
8ed8e45
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed8e45
2dc11df
 
 
 
 
 
 
8ed8e45
2dc11df
 
 
 
 
 
 
8ed8e45
2dc11df
 
 
 
 
8ed8e45
2dc11df
 
 
1552a49
291dd25
 
1552a49
 
291dd25
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed8e45
adb7f30
 
 
 
 
 
 
 
2dc11df
adb7f30
 
 
 
 
 
 
 
8ed8e45
2dc11df
1d332ea
adb7f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed8e45
2dc11df
1552a49
 
8dfaaf2
 
 
 
 
 
 
 
1552a49
2dc11df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
from io import BytesIO
from math import inf
import os
import base64
import json
import gradio as gr
import numpy as np
from gradio import processing_utils
import requests
from packaging import version
from PIL import Image, ImageDraw
import functools
import emoji
from langchain.llms.openai import OpenAI
from caption_anything.model import CaptionAnything
from caption_anything.utils.image_editing_utils import create_bubble_frame
from caption_anything.utils.utils import mask_painter, seg_model_map, prepare_segmenter, image_resize
from caption_anything.utils.parser import parse_augment
from caption_anything.captioner import build_captioner
from caption_anything.text_refiner import build_text_refiner
from caption_anything.segmenter import build_segmenter
from chatbox import ConversationBot, build_chatbot_tools, get_new_image_name
from segment_anything import sam_model_registry
import easyocr
import re
import edge_tts

# import tts 

###############################################################################
############# this part is for 3D generate #############
###############################################################################


# import spaces  #

import os
# import uuid
# from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
# from diffusers.utils import export_to_video
# from safetensors.torch import load_file
#from diffusers.models.modeling_outputs import Transformer2DModelOutput


import random
import uuid
import json
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler




import imageio
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler

from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
    FOV_to_intrinsics, 
    get_zero123plus_input_cameras,
    get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground, images_to_video

import tempfile
from functools import partial

from huggingface_hub import hf_hub_download




def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
    """
    Get the rendering camera parameters.
    """
    c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
    if is_flexicubes:
        cameras = torch.linalg.inv(c2ws)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
    else:
        extrinsics = c2ws.flatten(-2)
        intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
        cameras = torch.cat([extrinsics, intrinsics], dim=-1)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
    return cameras


def images_to_video(images, output_path, fps=30):
    # images: (N, C, H, W)
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    frames = []
    for i in range(images.shape[0]):
        frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
        assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
            f"Frame shape mismatch: {frame.shape} vs {images.shape}"
        assert frame.min() >= 0 and frame.max() <= 255, \
            f"Frame value out of range: {frame.min()} ~ {frame.max()}"
        frames.append(frame)
    imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')


###############################################################################
# Configuration.
###############################################################################

import shutil

def find_cuda():
    # Check if CUDA_HOME or CUDA_PATH environment variables are set
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')

    if cuda_home and os.path.exists(cuda_home):
        return cuda_home

    # Search for the nvcc executable in the system's PATH
    nvcc_path = shutil.which('nvcc')

    if nvcc_path:
        # Remove the 'bin/nvcc' part to get the CUDA installation path
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path

    return None

cuda_path = find_cuda()

if cuda_path:
    print(f"CUDA installation found at: {cuda_path}")
else:
    print("CUDA installation not found")

config_path = 'configs/instant-nerf-base.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config

IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False

device = torch.device('cuda')

# load diffusion model
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.2", 
    custom_pipeline="zero123plus",
    torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipeline.scheduler.config, timestep_spacing='trailing'
)

# load custom white-background UNet
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)

pipeline = pipeline.to(device)

# load reconstruction model
print('Loading reconstruction model ...')
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_nerf_base.ckpt", repo_type="model")
model0 = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
model0.load_state_dict(state_dict, strict=True)

model0 = model0.to(device)

print('Loading Finished!')


def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")
        image = None
    else:
        image = Image.open(input_image)
    return image

def preprocess(input_image, do_remove_background):

    rembg_session = rembg.new_session() if do_remove_background else None

    if do_remove_background:
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 0.85)

    return input_image


# @spaces.GPU
def generate_mvs(input_image, sample_steps, sample_seed):

    seed_everything(sample_seed)
    
    # sampling
    z123_image = pipeline(
        input_image, 
        num_inference_steps=sample_steps
    ).images[0]

    show_image = np.asarray(z123_image, dtype=np.uint8)
    show_image = torch.from_numpy(show_image)     # (960, 640, 3)
    show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
    show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
    show_image = Image.fromarray(show_image.numpy())

    return z123_image, show_image


# @spaces.GPU
def make3d(images):

    global model0
    if IS_FLEXICUBES:
        model0.init_flexicubes_geometry(device)
    model0 = model0.eval()

    images = np.asarray(images, dtype=np.float32) / 255.0
    images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()     # (3, 960, 640)
    images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)        # (6, 3, 320, 320)

    input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
    render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)

    images = images.unsqueeze(0).to(device)
    images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)

    mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
    print(mesh_fpath)
    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
    mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")

    with torch.no_grad():
        # get triplane
        planes = model0.forward_planes(images, input_cameras)

        # # get video
        # chunk_size = 20 if IS_FLEXICUBES else 1
        # render_size = 384
        
        # frames = []
        # for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
        #     if IS_FLEXICUBES:
        #         frame = model.forward_geometry(
        #             planes,
        #             render_cameras[:, i:i+chunk_size],
        #             render_size=render_size,
        #         )['img']
        #     else:
        #         frame = model.synthesizer(
        #             planes,
        #             cameras=render_cameras[:, i:i+chunk_size],
        #             render_size=render_size,
        #         )['images_rgb']
        #     frames.append(frame)
        # frames = torch.cat(frames, dim=1)

        # images_to_video(
        #     frames[0],
        #     video_fpath,
        #     fps=30,
        # )

        # print(f"Video saved to {video_fpath}")

        # get mesh
        mesh_out = model0.extract_mesh(
            planes,
            use_texture_map=False,
            **infer_config,
        )

        vertices, faces, vertex_colors = mesh_out
        vertices = vertices[:, [1, 2, 0]]
        
        save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
        save_obj(vertices, faces, vertex_colors, mesh_fpath)
        
        print(f"Mesh saved to {mesh_fpath}")

    return mesh_fpath, mesh_glb_fpath


###############################################################################
############# above part is for 3D generate #############
###############################################################################


###############################################################################
############# this part is for text to image #############
###############################################################################

# Use environment variables for flexibility
MODEL_ID = os.getenv("MODEL_ID", "sd-community/sdxl-flash")
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))  # Allow generating multiple images at once

# Determine device and load model outside of function for efficiency
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

# Torch compile for potential speedup (experimental)
if USE_TORCH_COMPILE:
    pipe.compile()

# CPU offloading for larger RAM capacity (experimental)
if ENABLE_CPU_OFFLOAD:
    pipe.enable_model_cpu_offload()

MAX_SEED = np.iinfo(np.int32).max

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

# @spaces.GPU(duration=30, queue=False)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 200,
    height: int = 200,
    guidance_scale: float = 3,
    num_inference_steps: int = 30,
    randomize_seed: bool = False,
    num_images: int = 4,  # Number of images to generate
    use_resolution_binning: bool = True, 
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)

    # Improved options handling
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }

    # Use resolution binning for faster generation with less VRAM usage
    # if use_resolution_binning:
    #     options["use_resolution_binning"] = True

    # Generate images potentially in batches
    images = []
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)

    image_paths = [save_image(img) for img in images]
    return image_paths, seed

examples = [
    "a cat eating a piece of cheese",
    "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
    "Ironman VS Hulk, ultrarealistic",
    "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
    "An alien holding a sign board containing the word 'Flash', futuristic, neonpunk",
    "Kids going to school, Anime style"
]




###############################################################################
############# above part is for text to image #############
###############################################################################


css = """
#warning {background-color: #FFCCCB}
.chatbot {
        padding: 0 !important;
        margin: 0 !important;
    }
"""
filtered_language_dict = {
    'English': 'en-US-JennyNeural',
    'Chinese': 'zh-CN-XiaoxiaoNeural',
    'French': 'fr-FR-DeniseNeural',
    'Spanish': 'es-MX-DaliaNeural',
    'Arabic': 'ar-SA-ZariyahNeural',
    'Portuguese': 'pt-BR-FranciscaNeural',
    'Cantonese': 'zh-HK-HiuGaaiNeural'
}

focus_map = {
"CFV-D":0, 
"CFV-DA":1, 
"CFV-DAI":2,
"PFV-DDA":3
}

'''
prompt_list = [
'Wiki_caption: {Wiki_caption}, you have to generate a caption according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}, you have to select sentences from wiki caption that describe the surrounding objects that may be associated with the picture object. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}. You have to choose sentences from the wiki caption that describe unrelated objects to the image. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}. You have to choose sentences from the wiki caption that describe unrelated objects to the image. Around {length} words of {sentiment} sentiment in {language}.'
]

prompt_list = [
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact (describes the object but does not include analysis)as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis and one interpret as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and the objects that may be related to the selected object and list one fact of selected object, one fact of related object and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.'
]
'''
prompt_list = [
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact (describes the selected object but does not include analysis)as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and list one fact and one analysis and one interpret as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.',
'Wiki_caption: {Wiki_caption}, you have to help me understand what is about the selected object and the objects that may be related to the selected object and list one fact of selected object, one fact of related object and one analysis as markdown outline with appropriate emojis that describes what you see according to the image and wiki caption. Each point listed is to be in {language} language, with a response length of about {length} words.'
]
    
    
gpt_state = 0
VOICE = "en-GB-SoniaNeural"
article = """
<div style='margin:20px auto;'>
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p>
</div>
"""

args = parse_augment()
args.segmenter = "huge"
args.segmenter_checkpoint = "sam_vit_h_4b8939.pth"
args.clip_filter = True
if args.segmenter_checkpoint is None:
    _, segmenter_checkpoint = prepare_segmenter(args.segmenter)
else:
    segmenter_checkpoint = args.segmenter_checkpoint
    
shared_captioner = build_captioner(args.captioner, args.device, args)
shared_sam_model = sam_model_registry[seg_model_map[args.segmenter]](checkpoint=segmenter_checkpoint).to(args.device)
ocr_lang = ["ch_tra", "en"]
shared_ocr_reader = easyocr.Reader(ocr_lang)
tools_dict = {e.split('_')[0].strip(): e.split('_')[1].strip() for e in args.chat_tools_dict.split(',')}
shared_chatbot_tools = build_chatbot_tools(tools_dict)


class ImageSketcher(gr.Image):
    """
    Fix the bug of gradio.Image that cannot upload with tool == 'sketch'.
    """

    is_template = True  # Magic to make this work with gradio.Block, don't remove unless you know what you're doing.

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def preprocess(self, x):
        if self.tool == 'sketch' and self.source in ["upload", "webcam"]:
            assert isinstance(x, dict)
            if x['mask'] is None:
                decode_image = processing_utils.decode_base64_to_image(x['image'])
                width, height = decode_image.size
                mask = np.zeros((height, width, 4), dtype=np.uint8)
                mask[..., -1] = 255
                mask = self.postprocess(mask)
                x['mask'] = mask
                
        return super().preprocess(x)


def build_caption_anything_with_models(args, api_key="", captioner=None, sam_model=None, ocr_reader=None, text_refiner=None,
                                       session_id=None):
    segmenter = build_segmenter(args.segmenter, args.device, args, model=sam_model)
    captioner = captioner
    if session_id is not None:
        print('Init caption anything for session {}'.format(session_id))
    return CaptionAnything(args, api_key, captioner=captioner, segmenter=segmenter, ocr_reader=ocr_reader, text_refiner=text_refiner)


def validate_api_key(api_key):
    api_key = str(api_key).strip()
    print(api_key)
    try:
        test_llm = OpenAI(model_name="gpt-3.5-turbo", temperature=0, openai_api_key=api_key)
        response = test_llm("Test API call")
        print(response)
        return True
    except Exception as e:
        print(f"API key validation failed: {e}")
        return False


def init_openai_api_key(api_key=""):
    text_refiner = None
    visual_chatgpt = None
    if api_key and len(api_key) > 30:
        print(api_key)
        if validate_api_key(api_key):
            try:
                text_refiner = build_text_refiner(args.text_refiner, args.device, args, api_key)
                assert len(text_refiner.llm('hi')) > 0 # test
                visual_chatgpt = ConversationBot(shared_chatbot_tools, api_key)
            except Exception as e:
                print(f"Error initializing TextRefiner or ConversationBot: {e}")
                text_refiner = None
                visual_chatgpt = None
        else:
            print("Invalid API key.")
    else:
        print("API key is too short.")
    print(text_refiner)
    openai_available = text_refiner is not None
    if openai_available:

        global gpt_state
        gpt_state=1
        # return [gr.update(visible=True)]+[gr.update(visible=False)]+[gr.update(visible=True)]*3+[gr.update(visible=False)]+ [gr.update(visible=False)]*3 + [text_refiner, visual_chatgpt, None]+[gr.update(visible=True)]*3
        return [gr.update(visible=True)]+[gr.update(visible=False)]+[gr.update(visible=True)]*3+[gr.update(visible=False)]+ [gr.update(visible=False)]*3 + [text_refiner, visual_chatgpt, None]+[gr.update(visible=True)]*2
    else:
        gpt_state=0
        # return [gr.update(visible=False)]*7 + [gr.update(visible=True)]*2 + [text_refiner, visual_chatgpt, 'Your OpenAI API Key is not available']+[gr.update(visible=False)]*3
        return [gr.update(visible=False)]*7 + [gr.update(visible=True)]*2 + [text_refiner, visual_chatgpt, 'Your OpenAI API Key is not available']+[gr.update(visible=False)]*2
        
def init_wo_openai_api_key():
        global gpt_state
        gpt_state=0
        # return  [gr.update(visible=False)]*4 + [gr.update(visible=True)]+ [gr.update(visible=False)]+[gr.update(visible=True)]+[gr.update(visible=False)]*2 + [None, None, None]+[gr.update(visible=False)]*3
        return  [gr.update(visible=False)]*4 + [gr.update(visible=True)]+ [gr.update(visible=False)]+[gr.update(visible=True)]+[gr.update(visible=False)]*2 + [None, None, None]+[gr.update(visible=False)]*2

def get_click_prompt(chat_input, click_state, click_mode):
    inputs = json.loads(chat_input)
    if click_mode == 'Continuous':
        points = click_state[0]
        labels = click_state[1]
        for input in inputs:
            points.append(input[:2])
            labels.append(input[2])
    elif click_mode == 'Single':
        points = []
        labels = []
        for input in inputs:
            points.append(input[:2])
            labels.append(input[2])
        click_state[0] = points
        click_state[1] = labels
    else:
        raise NotImplementedError

    prompt = {
        "prompt_type": ["click"],
        "input_point": click_state[0],
        "input_label": click_state[1],
        "multimask_output": "True",
    }
    return prompt


def update_click_state(click_state, caption, click_mode):
    if click_mode == 'Continuous':
        click_state[2].append(caption)
    elif click_mode == 'Single':
        click_state[2] = [caption]
    else:
        raise NotImplementedError

async def chat_input_callback(*args):
    visual_chatgpt, chat_input, click_state, state, aux_state ,language , autoplay = args
    if visual_chatgpt is not None:
        state, _, aux_state, _ = visual_chatgpt.run_text(chat_input, state, aux_state)
        last_text, last_response = state[-1]
        print("last response",last_response)
        if autoplay:
            audio = await texttospeech(last_response,language,autoplay)
        else: 
            audio=None
        return state, state, aux_state, audio
    else:
        response = "Text refiner is not initilzed, please input openai api key."
        state = state + [(chat_input, response)]
        audio = await texttospeech(response,language,autoplay)
        return state, state, None, audio


        
def upload_callback(image_input, state, visual_chatgpt=None, openai_api_key=None,language="English"):
    if isinstance(image_input, dict):  # if upload from sketcher_input, input contains image and mask
        image_input, mask = image_input['image'], image_input['mask']

    click_state = [[], [], []]
    image_input = image_resize(image_input, res=1024)

    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        ocr_reader=shared_ocr_reader,
        session_id=iface.app_id
    )
    model.segmenter.set_image(image_input)
    image_embedding = model.image_embedding
    original_size = model.original_size
    input_size = model.input_size

    if visual_chatgpt is not None:
        print('upload_callback: add caption to chatGPT memory')
        new_image_path = get_new_image_name('chat_image', func_name='upload')
        image_input.save(new_image_path)
        visual_chatgpt.current_image = new_image_path
        img_caption = model.captioner.inference(image_input, filter=False, args={'text_prompt':''})['caption']
        Human_prompt = f'\nHuman: The description of the image with path {new_image_path} is: {img_caption}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
        AI_prompt = "Received."
        visual_chatgpt.global_prompt = Human_prompt + 'AI: ' + AI_prompt
        visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + visual_chatgpt.global_prompt 
        parsed_data = get_image_gpt(openai_api_key, new_image_path,"Please provide the name, artist, year of creation, and material used for this painting. Return the information in dictionary format without any newline characters. If any information is unavailable, return \"None\" for that field. Format as follows: { \"name\": \"Name of the painting\",\"artist\": \"Name of the artist\", \"year\": \"Year of creation\", \"material\": \"Material used in the painting\" }.")
        parsed_data = json.loads(parsed_data.replace("'", "\""))
        name, artist, year, material= parsed_data["name"],parsed_data["artist"],parsed_data["year"], parsed_data["material"]
        # artwork_info = f"<div>Painting: {name}<br>Artist name: {artist}<br>Year: {year}<br>Material: {material}</div>"
        paragraph = get_image_gpt(openai_api_key, new_image_path,f"What's going on in this picture? in {language}")
    
    state = [
    (
        None,
        f"🤖 Hi, I am EyeSee. Let's explore this painting {name} together. You can click on the area you're interested in and choose from four types of information: Description, Analysis, Interpretation, and Judgment. Based on your selection, I will provide you with the relevant information."
    )
]

    return state, state, image_input, click_state, image_input, image_input, image_input, image_embedding, \
        original_size, input_size, f"Name: {name}", f"Artist: {artist}", f"Year: {year}", f"Material: {material}",f"Name: {name}", f"Artist: {artist}", f"Year: {year}", f"Material: {material}",paragraph,artist




def inference_click(image_input, point_prompt, click_mode, enable_wiki, language, sentiment, factuality,
                    length, image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt,
                    out_state, click_index_state, input_mask_state, input_points_state, input_labels_state, evt: gr.SelectData):
    click_index = evt.index

    if point_prompt == 'Positive':
        coordinate = "[[{}, {}, 1]]".format(str(click_index[0]), str(click_index[1]))
    else:
        coordinate = "[[{}, {}, 0]]".format(str(click_index[0]), str(click_index[1]))

    prompt = get_click_prompt(coordinate, click_state, click_mode)
    input_points = prompt['input_point']
    input_labels = prompt['input_label']

    controls = {'length': length,
                'sentiment': sentiment,
                'factuality': factuality,
                'language': language}

    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        ocr_reader=shared_ocr_reader,
        text_refiner=text_refiner,
        session_id=iface.app_id
    )

    model.setup(image_embedding, original_size, input_size, is_image_set=True)
    
    enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False
    out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki, verbose=True, args={'clip_filter': False})[0]

    state = state + [("Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]), None)]
    update_click_state(click_state, out['generated_captions']['raw_caption'], click_mode)
    text = out['generated_captions']['raw_caption']
    input_mask = np.array(out['mask'].convert('P'))
    image_input_nobackground = mask_painter(np.array(image_input), input_mask,background_alpha=0)
    image_input_withbackground=mask_painter(np.array(image_input), input_mask)

    click_index_state = click_index
    input_mask_state = input_mask
    input_points_state = input_points
    input_labels_state = input_labels
    out_state = out  

    if visual_chatgpt is not None:
        print('inference_click: add caption to chatGPT memory')
        new_crop_save_path = get_new_image_name('chat_image', func_name='crop')
        Image.open(out["crop_save_path"]).save(new_crop_save_path)
        point_prompt = f'You should primarly use tools on the selected regional image (description: {text}, path: {new_crop_save_path}), which is a part of the whole image (path: {visual_chatgpt.current_image}). If human mentioned some objects not in the selected region, you can use tools on the whole image.'
        visual_chatgpt.point_prompt = point_prompt

 
    print("new crop save",new_crop_save_path)

    yield state, state, click_state, image_input_nobackground, image_input_withbackground, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,new_crop_save_path,image_input_nobackground
    




async def submit_caption(state, text_refiner, length, sentiment, factuality, language, 
                   out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
                   autoplay,paragraph,focus_type,openai_api_key,new_crop_save_path):
    print("state",state)

    click_index = click_index_state
    
    # if pre_click_index==click_index:
    #     click_index = (click_index[0] - 1, click_index[1] - 1)
    #     pre_click_index = click_index
    # else:
    #     pre_click_index = click_index
    print("click_index",click_index)
    print("input_points_state",input_points_state)
    print("input_labels_state",input_labels_state)
        
    prompt=generate_prompt(focus_type,paragraph,length,sentiment,factuality,language)
    
    print("Prompt:", prompt)
    print("click",click_index)
    
    # image_input = create_bubble_frame(np.array(image_input), generated_caption, click_index, input_mask,
    #                                   input_points=input_points, input_labels=input_labels)


    if not args.disable_gpt and text_refiner:
        print("new crop save",new_crop_save_path)
        focus_info=get_image_gpt(openai_api_key,new_crop_save_path,prompt)
        if focus_info.startswith('"') and focus_info.endswith('"'):
            focus_info=focus_info[1:-1]
        focus_info=focus_info.replace('#', '')
        # state = state + [(None, f"Wiki: {paragraph}")]
        state = state + [(None, f"{focus_info}")]
        print("new_cap",focus_info)
        read_info = re.sub(r'[#[\]!*]','',focus_info)
        read_info = emoji.replace_emoji(read_info,replace="")    
        print("read info",read_info)

        # refined_image_input = create_bubble_frame(np.array(origin_image_input), focus_info, click_index, input_mask,
        #                                           input_points=input_points, input_labels=input_labels)
        try:
            audio_output = await texttospeech(read_info, language, autoplay)
            print("done")
            # return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
            return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, audio_output

        except Exception as e:
            state = state + [(None, f"Error during TTS prediction: {str(e)}")]
            print(f"Error during TTS prediction: {str(e)}")
            # return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None, None
            return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, audio_output

    else:
        try:
            audio_output = await texttospeech(focus_info, language, autoplay)
            # waveform_visual, audio_output = tts.predict(generated_caption, input_language, input_audio, input_mic, use_mic, agree)
            # return state, state, image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
            return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, audio_output

        except Exception as e:
            state = state + [(None, f"Error during TTS prediction: {str(e)}")]
            print(f"Error during TTS prediction: {str(e)}")
            return state, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None, None

def generate_prompt(focus_type, paragraph,length, sentiment, factuality, language):
    
    mapped_value = focus_map.get(focus_type, -1)

    controls = {
        'length': length,
        'sentiment': sentiment,
        'factuality': factuality,
        'language': language
    }

    if mapped_value != -1:
        prompt = prompt_list[mapped_value].format(
            Wiki_caption=paragraph,
            length=controls['length'],
            sentiment=controls['sentiment'],
            language=controls['language']
        )
    else:
        prompt = "Invalid focus type."

    if controls['factuality'] == "Imagination":
        prompt += " Assuming that I am someone who has viewed a lot of art and has a lot of experience viewing art. Explain artistic features (composition, color, style, or use of light) and discuss the symbolism of the content and its influence on later artistic movements."

    return prompt


def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')
    
def get_image_gpt(api_key, image_path,prompt,enable_wiki=None):
    # Getting the base64 string
    base64_image = encode_image(image_path)
    
    

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {api_key}"
    }

    prompt_text = prompt

    payload = {
        "model": "gpt-4o",
        "messages": [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": prompt_text
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64_image}"
                        }
                    }
                ]
            }
        ],
        "max_tokens": 300
    }

    # Sending the request to the OpenAI API
    response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
    result = response.json()
    print(result)
    content = result['choices'][0]['message']['content']
    # Assume the model returns a valid JSON string in 'content'
    try:
        return content
    except json.JSONDecodeError:
        return {"error": "Failed to parse model output"}




def get_sketch_prompt(mask: Image.Image):
    """
    Get the prompt for the sketcher.
    TODO: This is a temporary solution. We should cluster the sketch and get the bounding box of each cluster.
    """

    mask = np.asarray(mask)[..., 0]

    # Get the bounding box of the sketch
    y, x = np.where(mask != 0)
    x1, y1 = np.min(x), np.min(y)
    x2, y2 = np.max(x), np.max(y)

    prompt = {
        'prompt_type': ['box'],
        'input_boxes': [
            [x1, y1, x2, y2]
        ]
    }

    return prompt

submit_traj=0

async def inference_traject(origin_image,sketcher_image, enable_wiki, language, sentiment, factuality, length, image_embedding, state,
                      original_size, input_size, text_refiner,focus_type,paragraph,openai_api_key,autoplay,trace_type):
    image_input, mask = sketcher_image['image'], sketcher_image['mask']
    
    crop_save_path=""
    
    prompt = get_sketch_prompt(mask)
    boxes = prompt['input_boxes']
    boxes = boxes[0]
    global submit_traj
    submit_traj=1

    controls = {'length': length,
                'sentiment': sentiment,
                'factuality': factuality,
                'language': language}

    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        ocr_reader=shared_ocr_reader,
        text_refiner=text_refiner,
        session_id=iface.app_id
    )

    model.setup(image_embedding, original_size, input_size, is_image_set=True)

    enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False
    out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki,verbose=True)[0]
    
    print(trace_type)
    
    if trace_type=="Trace+Seg":
        input_mask = np.array(out['mask'].convert('P'))
        image_input = mask_painter(np.array(image_input), input_mask, background_alpha=0 )
        crop_save_path=out['crop_save_path']
    
    else:
        image_input = Image.fromarray(np.array(origin_image))
        draw = ImageDraw.Draw(image_input)
        draw.rectangle(boxes, outline='red', width=2) 
        cropped_image = origin_image.crop(boxes)
        cropped_image.save('temp.png')
        crop_save_path='temp.png'
    
    print("crop_svae_path",out['crop_save_path'])
        
    # Update components and states
    state.append((f'Box: {boxes}', None))
    
    # fake_click_index = (int((boxes[0][0] + boxes[0][2]) / 2), int((boxes[0][1] + boxes[0][3]) / 2))
    # image_input = create_bubble_frame(image_input, "", fake_click_index, input_mask)

    prompt=generate_prompt(focus_type, paragraph, length, sentiment, factuality, language)
    width, height = sketcher_image['image'].size
    sketcher_image['mask'] = np.zeros((height, width, 4), dtype=np.uint8)
    sketcher_image['mask'][..., -1] = 255
    sketcher_image['image']=image_input
    
    
    if not args.disable_gpt and text_refiner:
        focus_info=get_image_gpt(openai_api_key,crop_save_path,prompt)
        if focus_info.startswith('"') and focus_info.endswith('"'):
            focus_info=focus_info[1:-1]
        focus_info=focus_info.replace('#', '')
        state = state + [(None, f"{focus_info}")]
        print("new_cap",focus_info)
        read_info = re.sub(r'[#[\]!*]','',focus_info)
        read_info = emoji.replace_emoji(read_info,replace="")    
        print("read info",read_info)

        # refined_image_input = create_bubble_frame(np.array(origin_image_input), focus_info, click_index, input_mask,
        #                                           input_points=input_points, input_labels=input_labels)
        try:
            audio_output = await texttospeech(read_info, language,autoplay)
            # return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
            return state, state,image_input,audio_output


        except Exception as e:
            state = state + [(None, f"Error during TTS prediction: {str(e)}")]
            print(f"Error during TTS prediction: {str(e)}")
            # return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None, None
            return state, state, image_input,audio_output


    else:
        try:
            audio_output = await texttospeech(focus_info, language, autoplay)
            # waveform_visual, audio_output = tts.predict(generated_caption, input_language, input_audio, input_mic, use_mic, agree)
            # return state, state, image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
            return state, state, image_input,audio_output


        except Exception as e:
            state = state + [(None, f"Error during TTS prediction: {str(e)}")]
            print(f"Error during TTS prediction: {str(e)}")
            return state, state, image_input,audio_output


def clear_chat_memory(visual_chatgpt, keep_global=False):
    if visual_chatgpt is not None:
        visual_chatgpt.memory.clear()
        visual_chatgpt.point_prompt = ""
        if keep_global:
            visual_chatgpt.agent.memory.buffer = visual_chatgpt.global_prompt
        else:
            visual_chatgpt.current_image = None
            visual_chatgpt.global_prompt = ""


def export_chat_log(chat_state, paragraph, liked, disliked):
    try:
        if not chat_state:
            return None
        chat_log = f"Image Description: {paragraph}\n\n"
        for entry in chat_state:
            user_message, bot_response = entry
            if user_message and bot_response:
                chat_log += f"User: {user_message}\nBot: {bot_response}\n"
            elif user_message:
                chat_log += f"User: {user_message}\n"
            elif bot_response:
                chat_log += f"Bot: {bot_response}\n"
        
        # 添加 liked 和 disliked 信息
        chat_log += "\nLiked Responses:\n"
        for response in liked:
            chat_log += f"{response}\n"
        
        chat_log += "\nDisliked Responses:\n"
        for response in disliked:
            chat_log += f"{response}\n"
        
        print("export log...")
        print("chat_log", chat_log)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
            temp_file.write(chat_log.encode('utf-8'))
            temp_file_path = temp_file.name
            print(temp_file_path)
        return temp_file_path
    except Exception as e:
        print(f"An error occurred while exporting the chat log: {e}")
        return None



async def cap_everything(paragraph, visual_chatgpt,language,autoplay):

    # state = state + [(None, f"Caption Everything: {paragraph}")]  
    Human_prompt = f'\nThe description of the image with path {visual_chatgpt.current_image} is:\n{paragraph}\nThis information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
    AI_prompt = "Received."
    visual_chatgpt.global_prompt = Human_prompt + 'AI: ' + AI_prompt
    visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + visual_chatgpt.global_prompt 
    # waveform_visual, audio_output=tts.predict(paragraph, input_language, input_audio, input_mic, use_mic, agree)
    audio_output=await texttospeech(paragraph,language,autoplay)
    return paragraph,audio_output

def cap_everything_withoutsound(image_input, visual_chatgpt, text_refiner,paragraph):
    
    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        ocr_reader=shared_ocr_reader,
        text_refiner=text_refiner,
        session_id=iface.app_id
    )
    paragraph = model.inference_cap_everything(image_input, verbose=True)
    # state = state + [(None, f"Caption Everything: {paragraph}")]  
    Human_prompt = f'\nThe description of the image with path {visual_chatgpt.current_image} is:\n{paragraph}\nThis information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
    AI_prompt = "Received."
    visual_chatgpt.global_prompt = Human_prompt + 'AI: ' + AI_prompt
    visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + visual_chatgpt.global_prompt 
    return paragraph

def handle_liked(state,like_res):
    if state:
        like_res.append(state[-1][1])
        print(f"Last response recorded: {state[-1][1]}")
    else:
        print("No response to record.")
    state = state + [(None, f"Liked Received 👍")]
    return state,like_res
        
def handle_disliked(state,dislike_res):
    if state:
        dislike_res.append(state[-1][1])
        print(f"Last response recorded: {state[-1][1]}")
    else:
        print("No response to record.")
    state = state + [(None, f"Disliked Received 🥹")]
    return state,dislike_res
    
    
def get_style():
    current_version = version.parse(gr.__version__)
    print(current_version)
    if current_version <= version.parse('3.24.1'):
        style = '''
        #image_sketcher{min-height:500px}
        #image_sketcher [data-testid="image"], #image_sketcher [data-testid="image"] > div{min-height: 500px}
        #image_upload{min-height:500px}
        #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 500px}
        .custom-language {
            width: 20%; 
        }

        .custom-autoplay {
            width: 40%; 
        }

        .custom-output {
            width: 30%; 
        }

        '''
    elif current_version <= version.parse('3.27'):
        style = '''
        #image_sketcher{min-height:500px}
        #image_upload{min-height:500px}
        .custom-language {
            width: 20%; 
        }

        .custom-autoplay {
            width: 40%; 
        }

        .custom-output {
            width: 30%; 
        }
        .custom-gallery {
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
        }

        .custom-gallery img {
            width: 48%;  
            margin-bottom: 10px; 
        }
        '''
    else:
        style = None

    return style

# def handle_like_dislike(like_data, like_state, dislike_state):
#     if like_data.liked:
#         if like_data.index not in like_state:
#             like_state.append(like_data.index)
#             message = f"Liked: {like_data.value} at index {like_data.index}"
#         else:
#             message = "You already liked this item"
#     else:
#         if like_data.index not in dislike_state:
#             dislike_state.append(like_data.index)
#             message = f"Disliked: {like_data.value} at index {like_data.index}"
#         else:
#             message = "You already disliked this item"
    
#     return like_state, dislike_state

async def texttospeech(text, language, autoplay):
    try:
        if autoplay:
            voice = filtered_language_dict[language]
            communicate = edge_tts.Communicate(text, voice)
            file_path = "output.wav"
            await communicate.save(file_path)
            with open(file_path, "rb") as audio_file:
                audio_bytes = BytesIO(audio_file.read())
            audio = base64.b64encode(audio_bytes.read()).decode("utf-8")
            print("TTS processing completed.")
            audio_style = 'style="width:210px;"'
            audio_player = f'<audio src="data:audio/wav;base64,{audio}" controls autoplay {audio_style}></audio>'
        else:
            audio_player = None
            print("Autoplay is disabled.")
        return audio_player
    except Exception as e:
        print(f"Error in texttospeech: {e}")
        return None


def create_ui():
    title = """<p><h1 align="center">EyeSee Anything in Art</h1></p>
    """
    description = """<p>Gradio demo for EyeSee Anything in Art, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. """

    examples = [
        ["test_images/ambass.jpg"],
        ["test_images/pearl.jpg"],
        ["test_images/Picture0.png"],
        ["test_images/Picture1.png"],
        ["test_images/Picture2.png"],
        ["test_images/Picture3.png"],
        ["test_images/Picture4.png"],
        ["test_images/Picture5.png"],
        
    ]

    with gr.Blocks(
            css=get_style(),
            theme=gr.themes.Base()
    ) as iface:
        state = gr.State([])
        out_state = gr.State(None)
        click_state = gr.State([[], [], []])
        origin_image = gr.State(None)
        image_embedding = gr.State(None)
        text_refiner = gr.State(None)
        visual_chatgpt = gr.State(None)
        original_size = gr.State(None)
        input_size = gr.State(None)
        paragraph = gr.State("")
        aux_state = gr.State([])
        click_index_state = gr.State((0, 0))
        input_mask_state = gr.State(np.zeros((1, 1)))
        input_points_state = gr.State([])
        input_labels_state = gr.State([])
        new_crop_save_path = gr.State(None)
        image_input_nobackground = gr.State(None)
        artist=gr.State(None)
        like_res=gr.State([])
        dislike_res=gr.State([])
        gr.Markdown(title)
        gr.Markdown(description)
        # with gr.Row(align="right", visible=False, elem_id="top_row") as top_row:
        #     with gr.Column(scale=0.5):
        #         # gr.Markdown("Left side content")
                
        #     with gr.Column(scale=0.5):
        #         with gr.Row(align="right",visible=False) as language_select:
        #             language = gr.Dropdown(
        #                 ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"],
        #                 value="English", label="Language", interactive=True)
            
        #         with gr.Row(align="right",visible=False) as autoplay:
        #             auto_play = gr.Checkbox(label="Check to autoplay audio", value=False,scale=0.4)
        #             output_audio = gr.HTML(label="Synthesised Audio",scale=0.6)

            

        with gr.Row(visible=False, elem_id="top_row") as top_row:  
            language = gr.Dropdown(
            ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"],
            value="English", label="Language", interactive=True, elem_classes="custom-language"
        )
            auto_play = gr.Checkbox(
            label="Check to autoplay audio", value=False, elem_classes="custom-autoplay"
        )
            output_audio = gr.HTML(
                label="Synthesised Audio", elem_classes="custom-output"
            )


        # with gr.Row(align="right",visible=False) as language_select:
        #     language = gr.Dropdown(
        #         ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"],
        #         value="English", label="Language", interactive=True)
    
        # with gr.Row(align="right",visible=False) as autoplay:
        #     auto_play = gr.Checkbox(label="Check to autoplay audio", value=False,scale=0.4)
        #     output_audio = gr.HTML(label="Synthesised Audio",scale=0.6)

        with gr.Row():                        
            
            with gr.Column():
                with gr.Column(visible=False) as modules_not_need_gpt:
                    with gr.Tab("Base(GPT Power)",visible=False) as base_tab:
                        image_input_base = gr.Image(type="pil", interactive=True, elem_id="image_upload")
                        example_image = gr.Image(type="pil", interactive=False, visible=False)
                        with gr.Row():
                            name_label_base = gr.Button(value="Name: ")
                            artist_label_base = gr.Button(value="Artist: ")
                            year_label_base = gr.Button(value="Year: ")
                            material_label_base = gr.Button(value="Material: ")   

                    with gr.Tab("Click") as click_tab:
                        image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload")
                        example_image = gr.Image(type="pil", interactive=False, visible=False)
                        with gr.Row():
                            name_label = gr.Button(value="Name: ")
                            artist_label = gr.Button(value="Artist: ")
                            year_label = gr.Button(value="Year: ")
                            material_label = gr.Button(value="Material: ")
                        with gr.Row():
                            with gr.Row():
                                focus_type = gr.Radio(
                                        choices=["CFV-D", "CFV-DA", "CFV-DAI","PFV-DDA"],
                                        value="CFV-D",
                                        label="Information Type",
                                        interactive=True)
                            with gr.Row():
                                submit_button_click=gr.Button(value="Submit", interactive=True,variant='primary',size="sm")
                        with gr.Row():
                            with gr.Row():
                                point_prompt = gr.Radio(
                                    choices=["Positive", "Negative"],
                                    value="Positive",
                                    label="Point Prompt",
                                    interactive=True)
                                click_mode = gr.Radio(
                                    choices=["Continuous", "Single"],
                                    value="Continuous",
                                    label="Clicking Mode",
                                    interactive=True)
                            with gr.Row():
                                clear_button_click = gr.Button(value="Clear Clicks", interactive=True)
                                clear_button_image = gr.Button(value="Clear Image", interactive=True)
                                
                    with gr.Tab("Trajectory (beta)") as traj_tab:
                        sketcher_input = ImageSketcher(type="pil", interactive=True, brush_radius=10, 
                                                       elem_id="image_sketcher")
                        example_image = gr.Image(type="pil", interactive=False, visible=False)
                        with gr.Row():                   
                            submit_button_sketcher = gr.Button(value="Submit", interactive=True)
                            clear_button_sketcher = gr.Button(value="Clear Sketch", interactive=True)
                        with gr.Row():
                            with gr.Row():
                                focus_type_sketch = gr.Radio(
                                        choices=["CFV-D", "CFV-DA", "CFV-DAI","PFV-DDA"],
                                        value="CFV-D",
                                        label="Information Type",
                                        interactive=True)
                                Input_sketch = gr.Radio(
                                        choices=["Trace+Seg", "Trace"],
                                        value="Trace+Seg",
                                        label="Trace Type",
                                        interactive=True)

                    with gr.Column(visible=False) as modules_need_gpt1:
                        with gr.Row():
                            sentiment = gr.Radio(
                                choices=["Positive", "Natural", "Negative"],
                                value="Natural",
                                label="Sentiment",
                                interactive=True,
                            )
                        with gr.Row():
                            factuality = gr.Radio(
                                choices=["Factual", "Imagination"],
                                value="Factual",
                                label="Factuality",
                                interactive=True,
                            )
                            length = gr.Slider(
                                minimum=10,
                                maximum=80,
                                value=10,
                                step=1,
                                interactive=True,
                                label="Generated Caption Length",
                            )
                            # 是否启用wiki内容整合到caption中
                            enable_wiki = gr.Radio(
                                choices=["Yes", "No"],
                                value="No",
                                label="Expert",
                                interactive=True)
                with gr.Column(visible=True) as modules_not_need_gpt3:
                    gr.Examples(
                examples=examples,
                inputs=[example_image],
            )


                
                

            with gr.Column():                    
                with gr.Column(visible=True) as module_key_input:
                    openai_api_key = gr.Textbox(
                        placeholder="Input openAI API key",
                        show_label=False,
                        label="OpenAI API Key",
                        lines=1,
                        type="password")
                    with gr.Row():
                        enable_chatGPT_button = gr.Button(value="Run with ChatGPT", interactive=True, variant='primary')
                        disable_chatGPT_button = gr.Button(value="Run without ChatGPT (Faster)", interactive=True,
                                                        variant='primary')
                with gr.Column(visible=False) as module_notification_box:
                    notification_box = gr.Textbox(lines=1, label="Notification", max_lines=5, show_label=False)
                
                with gr.Column() as modules_need_gpt0:
                    with gr.Column(visible=False) as modules_need_gpt2: 
                        paragraph_output = gr.Textbox(lines=16, label="Describe Everything", max_lines=16)
                        cap_everything_button = gr.Button(value="Caption Everything in a Paragraph", interactive=True)
                
                with gr.Column(visible=False) as modules_not_need_gpt2: 
                    with gr.Blocks():
                        chatbot = gr.Chatbot(label="Chatbox", elem_classes="chatbot",likeable=True).style(height=600)
                        with gr.Column(visible=False) as modules_need_gpt3:
                            chat_input = gr.Textbox(show_label=False, placeholder="Enter text and press Enter").style(
                                container=False)
                            with gr.Row(): 
                                clear_button_text = gr.Button(value="Clear Text", interactive=True)
                                submit_button_text = gr.Button(value="Send", interactive=True, variant="primary")
                                upvote_btn = gr.Button(value="👍 Upvote", interactive=True) 
                                downvote_btn = gr.Button(value="👎 Downvote", interactive=True)
                                
                                
                            with gr.Row():
                                export_button = gr.Button(value="Export Chat Log", interactive=True, variant="primary")
                            with gr.Row():
                                chat_log_file = gr.File(label="Download Chat Log")
            
                # TTS interface hidden initially
            with gr.Column(visible=False) as tts_interface:
                input_text = gr.Textbox(label="Text Prompt", value="Hello, World !, here is an example of light voice cloning. Try to upload your best audio samples quality")
                input_language = gr.Dropdown(label="Language", choices=["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn"], value="en")
                input_audio = gr.Audio(label="Reference Audio", type="filepath", value="examples/female.wav")
                input_mic = gr.Audio(source="microphone", type="filepath", label="Use Microphone for Reference")
                use_mic = gr.Checkbox(label="Check to use Microphone as Reference", value=False)
                agree = gr.Checkbox(label="Agree", value=True)
                output_waveform = gr.Video(label="Waveform Visual")
                # output_audio = gr.HTML(label="Synthesised Audio")

                with gr.Row():
                    submit_tts = gr.Button(value="Submit", interactive=True)
                    clear_tts = gr.Button(value="Clear", interactive=True)
        ###############################################################################
        ############# this part is for text to image #############
        ###############################################################################
        
        with gr.Row(variant="panel") as text2image_model:

            with gr.Column():
                with gr.Column():
                    gr.Radio([artist], label="Artist", info="Who is the artist?🧑‍🎨"),
                    gr.Radio(["Oil Painting","Printmaking","Watercolor Painting","Drawing"], label="Art Forms", info="What are the art forms?🎨"),
                    gr.Radio(["Renaissance", "Baroque", "Impressionism","Modernism"], label="Period", info="Which art period?⏳"),
                    # to be done 
                    gr.Dropdown(
                        ["ran", "swam", "ate", "slept"], value=["swam", "slept"], multiselect=True, label="Items", info="Which items are you interested in?"
                    )
            
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run")
                
                with gr.Accordion("Advanced options", open=False):
                    num_images = gr.Slider(
                        label="Number of Images",
                        minimum=1,
                        maximum=4,
                        step=1,
                        value=4,
                    )
                    with gr.Row():
                        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                        negative_prompt = gr.Text(
                            label="Negative prompt",
                            max_lines=5,
                            lines=4,
                            placeholder="Enter a negative prompt",
                            value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
                            visible=True,
                        )
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    with gr.Row(visible=True):
                        width = gr.Slider(
                            label="Width",
                            minimum=100,
                            maximum=MAX_IMAGE_SIZE,
                            step=64,
                            value=1024,
                        )
                        height = gr.Slider(
                            label="Height",
                            minimum=100,
                            maximum=MAX_IMAGE_SIZE,
                            step=64,
                            value=1024,
                        )
                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance Scale",
                            minimum=0.1,
                            maximum=6,
                            step=0.1,
                            value=3.0,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=15,
                            step=1,
                            value=8,
                        )
            with gr.Column():
                result = gr.Gallery(
                    label="Result" 
                    # columns=4, 
                    # rows=2,
                    # show_label=False, 
                    # allow_preview=True, 
                    # object_fit="contain", 
                    # height="auto", 
                    # preview=True, 
                    # show_share_button=True, 
                    # show_download_button=True
                ).style(height='auto',columns=4)



        # gr.Examples(
        #     examples=examples,
        #     inputs=prompt,
        #     cache_examples=False
        # )
    
        use_negative_prompt.change(
            fn=lambda x: gr.update(visible=x),
            inputs=use_negative_prompt,
            outputs=negative_prompt,
            api_name=False,
        )
    
        # gr.on(
        #     triggers=[
        #         prompt.submit,
        #         negative_prompt.submit,
        #         run_button.click,
        #     ],
        #     fn=generate,
        #     inputs=[
        #         prompt,
        #         negative_prompt,
        #         use_negative_prompt,
        #         seed,
        #         width,
        #         height,
        #         guidance_scale,
        #         num_inference_steps,
        #         randomize_seed,
        #         num_images
        #     ],
        #     outputs=[result, seed],
        #     api_name="run",
        # )
        run_button.click(
            fn=generate,
            inputs=[
                prompt,
                negative_prompt,
                use_negative_prompt,
                seed,
                width,
                height,
                guidance_scale,
                num_inference_steps,
                randomize_seed,
                num_images
            ],
            outputs=[result, seed]
            )
        
        ###############################################################################
        ############# above part is for text to image #############
        ###############################################################################

        
        ###############################################################################
        # this part is for 3d generate.
        ###############################################################################
        
        with gr.Row(variant="panel",visible=False) as d3_model:
            with gr.Column():
                with gr.Row():
                    input_image = gr.Image(
                        label="Input Image",
                        image_mode="RGBA",
                        sources="upload",
                        #width=256,
                        #height=256,
                        type="pil",
                        elem_id="content_image",
                    )
                    processed_image = gr.Image(
                        label="Processed Image", 
                        image_mode="RGBA", 
                        #width=256,
                        #height=256,
                        type="pil", 
                        interactive=False
                    )
                with gr.Row():
                    with gr.Group():
                        do_remove_background = gr.Checkbox(
                            label="Remove Background", value=True
                        )
                        sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
    
                        sample_steps = gr.Slider(
                            label="Sample Steps",
                            minimum=30,
                            maximum=75,
                            value=75,
                            step=5
                        )
    
                with gr.Row():
                    submit = gr.Button("Generate", elem_id="generate", variant="primary")
    
                with gr.Row(variant="panel"):
                    gr.Examples(
                        examples=[
                            os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
                        ],
                        inputs=[input_image],
                        label="Examples",
                        cache_examples=False,
                        examples_per_page=16
                    )

            with gr.Column():
    
                with gr.Row():
    
                    with gr.Column():
                        mv_show_images = gr.Image(
                            label="Generated Multi-views",
                            type="pil",
                            width=379,
                            interactive=False
                        )
    
                    # with gr.Column():
                    #     output_video = gr.Video(
                    #         label="video", format="mp4",
                    #         width=379,
                    #         autoplay=True,
                    #         interactive=False
                    #     )
    
                with gr.Row():
                    with gr.Tab("OBJ"):
                        output_model_obj = gr.Model3D(
                            label="Output Model (OBJ Format)",
                            interactive=False,
                        )
                        gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
                    with gr.Tab("GLB"):
                        output_model_glb = gr.Model3D(
                            label="Output Model (GLB Format)",
                            interactive=False,
                        )
                        gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
    
                
        
        
        mv_images = gr.State()
        
        # chatbot.like(handle_like_dislike, inputs=[like_state, dislike_state], outputs=[like_state, dislike_state])

        submit.click(fn=check_input_image, inputs=[new_crop_save_path], outputs=[processed_image]).success(
            fn=generate_mvs,
            inputs=[processed_image, sample_steps, sample_seed],
            outputs=[mv_images, mv_show_images]
            
        ).success(
            fn=make3d,
            inputs=[mv_images],
            outputs=[output_model_obj, output_model_glb]
        )
        
        ###############################################################################
        # above part is for 3d generate.
        ###############################################################################
       
        
        def clear_tts_fields():
            return [gr.update(value=""), gr.update(value=""), None, None, gr.update(value=False), gr.update(value=True), None, None]

        # submit_tts.click(
        #     tts.predict,
        #     inputs=[input_text, input_language, input_audio, input_mic, use_mic, agree],
        #     outputs=[output_waveform, output_audio],
        #     queue=True
        # )

        clear_tts.click(
            clear_tts_fields,
            inputs=None,
            outputs=[input_text, input_language, input_audio, input_mic, use_mic, agree, output_waveform, output_audio],
            queue=False
        )
        


        
        clear_button_sketcher.click(
            lambda x: (x),
            [origin_image],
            [sketcher_input],
            queue=False,
            show_progress=False
        )

    


        
        openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key],
                              outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt,
                                       modules_not_need_gpt2, tts_interface,module_key_input ,module_notification_box, text_refiner, visual_chatgpt, notification_box,d3_model,top_row])
        enable_chatGPT_button.click(init_openai_api_key, inputs=[openai_api_key],
                                    outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3,
                                             modules_not_need_gpt,
                                             modules_not_need_gpt2, tts_interface,module_key_input,module_notification_box, text_refiner, visual_chatgpt, notification_box,d3_model,top_row])
        disable_chatGPT_button.click(init_wo_openai_api_key,
                                     outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3,
                                              modules_not_need_gpt,
                                              modules_not_need_gpt2, tts_interface,module_key_input, module_notification_box, text_refiner, visual_chatgpt, notification_box,d3_model,top_row])
        
        enable_chatGPT_button.click(
            lambda: (None, [], [], [[], [], []], "", "", ""),
            [],
            [image_input, chatbot, state, click_state, paragraph_output, origin_image],
            queue=False,
            show_progress=False
        )
        openai_api_key.submit(
            lambda: (None, [], [], [[], [], []], "", "", ""),
            [],
            [image_input, chatbot, state, click_state, paragraph_output, origin_image],
            queue=False,
            show_progress=False
        )

        cap_everything_button.click(cap_everything, [paragraph, visual_chatgpt, language,auto_play], 
                                    [paragraph_output,output_audio])
        
        clear_button_click.click(
            lambda x: ([[], [], []], x),
            [origin_image],
            [click_state, image_input],
            queue=False,
            show_progress=False
        )
        clear_button_click.click(functools.partial(clear_chat_memory, keep_global=True), inputs=[visual_chatgpt])
        clear_button_image.click(
            lambda: (None, [], [], [[], [], []], "", "", ""),
            [],
            [image_input, chatbot, state, click_state, paragraph_output, origin_image],
            queue=False,
            show_progress=False
        )
        clear_button_image.click(clear_chat_memory, inputs=[visual_chatgpt])
        clear_button_text.click(
            lambda: ([], [], [[], [], [], []]),
            [],
            [chatbot, state, click_state],
            queue=False,
            show_progress=False
        )
        clear_button_text.click(clear_chat_memory, inputs=[visual_chatgpt])
        
        image_input.clear(
            lambda: (None, [], [], [[], [], []], "", "", ""),
            [],
            [image_input, chatbot, state, click_state, paragraph_output, origin_image],
            queue=False,
            show_progress=False
        )

        image_input.clear(clear_chat_memory, inputs=[visual_chatgpt])


        

        image_input_base.upload(upload_callback, [image_input_base, state, visual_chatgpt,openai_api_key],
                           [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,
                            image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base,paragraph,artist])
        
        image_input.upload(upload_callback, [image_input, state, visual_chatgpt, openai_api_key],
                           [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,
                            image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base,paragraph,artist])
        sketcher_input.upload(upload_callback, [sketcher_input, state, visual_chatgpt, openai_api_key],
                              [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,
                               image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base,paragraph,artist])
        chat_input.submit(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state,language,auto_play],
                          [chatbot, state, aux_state,output_audio])
        chat_input.submit(lambda: "", None, chat_input)
        submit_button_text.click(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state,language,auto_play],
                          [chatbot, state, aux_state,output_audio])
        submit_button_text.click(lambda: "", None, chat_input)
        example_image.change(upload_callback, [example_image, state, visual_chatgpt, openai_api_key],
                             [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,
                              image_embedding, original_size, input_size,name_label,artist_label,year_label,material_label,name_label_base, artist_label_base, year_label_base, material_label_base,paragraph,artist])

        example_image.change(clear_chat_memory, inputs=[visual_chatgpt])

        def on_click_tab_selected():
            if gpt_state ==1:
                print(gpt_state)
                print("using gpt")
                return [gr.update(visible=True)]*2+[gr.update(visible=False)]*2
            else: 
                print("no gpt")
                print("gpt_state",gpt_state)
                return [gr.update(visible=False)]+[gr.update(visible=True)]+[gr.update(visible=False)]*2
        
        def on_base_selected():
            if gpt_state ==1:
                print(gpt_state)
                print("using gpt")
                return [gr.update(visible=True)]*2+[gr.update(visible=False)]*2
            else: 
                print("no gpt")
                return [gr.update(visible=False)]*4
        

        traj_tab.select(on_click_tab_selected, outputs=[modules_need_gpt1,modules_not_need_gpt2,modules_need_gpt0,modules_need_gpt2])
        click_tab.select(on_click_tab_selected, outputs=[modules_need_gpt1,modules_not_need_gpt2,modules_need_gpt0,modules_need_gpt2])
        base_tab.select(on_base_selected, outputs=[modules_need_gpt0,modules_need_gpt2,modules_not_need_gpt2,modules_need_gpt1])

  
  

        image_input.select(
            inference_click,
            inputs=[
                origin_image, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length,
                image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt,
                out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
            ],
            outputs=[chatbot, state, click_state, image_input, input_image, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,new_crop_save_path,image_input_nobackground],
            show_progress=False, queue=True
        )


        submit_button_click.click(
            submit_caption,
            inputs=[
        state, text_refiner,length, sentiment, factuality, language, 
        out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
        auto_play,paragraph,focus_type,openai_api_key,new_crop_save_path
    ],
            outputs=[
                chatbot, state, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,
                output_audio 
            ],
            show_progress=True,
            queue=True
        )
    

        submit_button_sketcher.click(
            inference_traject,
            inputs=[
                origin_image,sketcher_input, enable_wiki, language, sentiment, factuality, length, image_embedding, state,
                original_size, input_size, text_refiner,focus_type_sketch,paragraph,openai_api_key,auto_play,Input_sketch
            ],
            outputs=[chatbot, state, sketcher_input,output_audio],
            show_progress=False, queue=True
        )
        
        export_button.click(
            export_chat_log,
            inputs=[state,paragraph,like_res,dislike_res],
            outputs=[chat_log_file],
            queue=True
        )
        
        upvote_btn.click(
            handle_liked,
            inputs=[state,like_res],
            outputs=[chatbot,like_res]
        )
        
        downvote_btn.click(
            handle_disliked,
            inputs=[state,dislike_res],
            outputs=[chatbot,dislike_res]
        )





        return iface


if __name__ == '__main__':
    iface = create_ui()
    iface.queue(concurrency_count=5, api_open=False, max_size=10)
    iface.launch(server_name="0.0.0.0", enable_queue=True)