Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -21,6 +21,261 @@ from segment_anything import sam_model_registry
|
|
21 |
import easyocr
|
22 |
import tts
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
gpt_state = 0
|
26 |
|
@@ -735,7 +990,117 @@ def create_ui():
|
|
735 |
submit_tts = gr.Button(value="Submit", interactive=True)
|
736 |
clear_tts = gr.Button(value="Clear", interactive=True)
|
737 |
|
738 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
739 |
def clear_tts_fields():
|
740 |
return [gr.update(value=""), gr.update(value=""), None, None, gr.update(value=False), gr.update(value=True), None, None]
|
741 |
|
|
|
21 |
import easyocr
|
22 |
import tts
|
23 |
|
24 |
+
###############################################################################
|
25 |
+
############# this part is for 3D generate #############
|
26 |
+
###############################################################################
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
import spaces
|
31 |
+
|
32 |
+
import os
|
33 |
+
import imageio
|
34 |
+
import numpy as np
|
35 |
+
import torch
|
36 |
+
import rembg
|
37 |
+
from PIL import Image
|
38 |
+
from torchvision.transforms import v2
|
39 |
+
from pytorch_lightning import seed_everything
|
40 |
+
from omegaconf import OmegaConf
|
41 |
+
from einops import rearrange, repeat
|
42 |
+
from tqdm import tqdm
|
43 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
44 |
+
|
45 |
+
from src.utils.train_util import instantiate_from_config
|
46 |
+
from src.utils.camera_util import (
|
47 |
+
FOV_to_intrinsics,
|
48 |
+
get_zero123plus_input_cameras,
|
49 |
+
get_circular_camera_poses,
|
50 |
+
)
|
51 |
+
from src.utils.mesh_util import save_obj, save_glb
|
52 |
+
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
53 |
+
|
54 |
+
import tempfile
|
55 |
+
from functools import partial
|
56 |
+
|
57 |
+
from huggingface_hub import hf_hub_download
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
|
63 |
+
"""
|
64 |
+
Get the rendering camera parameters.
|
65 |
+
"""
|
66 |
+
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
67 |
+
if is_flexicubes:
|
68 |
+
cameras = torch.linalg.inv(c2ws)
|
69 |
+
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
70 |
+
else:
|
71 |
+
extrinsics = c2ws.flatten(-2)
|
72 |
+
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
|
73 |
+
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
74 |
+
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
75 |
+
return cameras
|
76 |
+
|
77 |
+
|
78 |
+
def images_to_video(images, output_path, fps=30):
|
79 |
+
# images: (N, C, H, W)
|
80 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
81 |
+
frames = []
|
82 |
+
for i in range(images.shape[0]):
|
83 |
+
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
|
84 |
+
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
|
85 |
+
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
|
86 |
+
assert frame.min() >= 0 and frame.max() <= 255, \
|
87 |
+
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
|
88 |
+
frames.append(frame)
|
89 |
+
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
|
90 |
+
|
91 |
+
|
92 |
+
###############################################################################
|
93 |
+
# Configuration.
|
94 |
+
###############################################################################
|
95 |
+
|
96 |
+
import shutil
|
97 |
+
|
98 |
+
def find_cuda():
|
99 |
+
# Check if CUDA_HOME or CUDA_PATH environment variables are set
|
100 |
+
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
101 |
+
|
102 |
+
if cuda_home and os.path.exists(cuda_home):
|
103 |
+
return cuda_home
|
104 |
+
|
105 |
+
# Search for the nvcc executable in the system's PATH
|
106 |
+
nvcc_path = shutil.which('nvcc')
|
107 |
+
|
108 |
+
if nvcc_path:
|
109 |
+
# Remove the 'bin/nvcc' part to get the CUDA installation path
|
110 |
+
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
|
111 |
+
return cuda_path
|
112 |
+
|
113 |
+
return None
|
114 |
+
|
115 |
+
cuda_path = find_cuda()
|
116 |
+
|
117 |
+
if cuda_path:
|
118 |
+
print(f"CUDA installation found at: {cuda_path}")
|
119 |
+
else:
|
120 |
+
print("CUDA installation not found")
|
121 |
+
|
122 |
+
config_path = 'configs/instant-mesh-large.yaml'
|
123 |
+
config = OmegaConf.load(config_path)
|
124 |
+
config_name = os.path.basename(config_path).replace('.yaml', '')
|
125 |
+
model_config = config.model_config
|
126 |
+
infer_config = config.infer_config
|
127 |
+
|
128 |
+
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
|
129 |
+
|
130 |
+
device = torch.device('cuda')
|
131 |
+
|
132 |
+
# load diffusion model
|
133 |
+
print('Loading diffusion model ...')
|
134 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
135 |
+
"sudo-ai/zero123plus-v1.2",
|
136 |
+
custom_pipeline="zero123plus",
|
137 |
+
torch_dtype=torch.float16,
|
138 |
+
)
|
139 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
140 |
+
pipeline.scheduler.config, timestep_spacing='trailing'
|
141 |
+
)
|
142 |
+
|
143 |
+
# load custom white-background UNet
|
144 |
+
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
|
145 |
+
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
|
146 |
+
pipeline.unet.load_state_dict(state_dict, strict=True)
|
147 |
+
|
148 |
+
pipeline = pipeline.to(device)
|
149 |
+
|
150 |
+
# load reconstruction model
|
151 |
+
print('Loading reconstruction model ...')
|
152 |
+
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
153 |
+
model = instantiate_from_config(model_config)
|
154 |
+
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
155 |
+
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
156 |
+
model.load_state_dict(state_dict, strict=True)
|
157 |
+
|
158 |
+
model = model.to(device)
|
159 |
+
|
160 |
+
print('Loading Finished!')
|
161 |
+
|
162 |
+
|
163 |
+
def check_input_image(input_image):
|
164 |
+
if input_image is None:
|
165 |
+
raise gr.Error("No image uploaded!")
|
166 |
+
|
167 |
+
|
168 |
+
def preprocess(input_image, do_remove_background):
|
169 |
+
|
170 |
+
rembg_session = rembg.new_session() if do_remove_background else None
|
171 |
+
|
172 |
+
if do_remove_background:
|
173 |
+
input_image = remove_background(input_image, rembg_session)
|
174 |
+
input_image = resize_foreground(input_image, 0.85)
|
175 |
+
|
176 |
+
return input_image
|
177 |
+
|
178 |
+
|
179 |
+
@spaces.GPU
|
180 |
+
def generate_mvs(input_image, sample_steps, sample_seed):
|
181 |
+
|
182 |
+
seed_everything(sample_seed)
|
183 |
+
|
184 |
+
# sampling
|
185 |
+
z123_image = pipeline(
|
186 |
+
input_image,
|
187 |
+
num_inference_steps=sample_steps
|
188 |
+
).images[0]
|
189 |
+
|
190 |
+
show_image = np.asarray(z123_image, dtype=np.uint8)
|
191 |
+
show_image = torch.from_numpy(show_image) # (960, 640, 3)
|
192 |
+
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
193 |
+
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
194 |
+
show_image = Image.fromarray(show_image.numpy())
|
195 |
+
|
196 |
+
return z123_image, show_image
|
197 |
+
|
198 |
+
|
199 |
+
@spaces.GPU
|
200 |
+
def make3d(images):
|
201 |
+
|
202 |
+
global model
|
203 |
+
if IS_FLEXICUBES:
|
204 |
+
model.init_flexicubes_geometry(device, use_renderer=False)
|
205 |
+
model = model.eval()
|
206 |
+
|
207 |
+
images = np.asarray(images, dtype=np.float32) / 255.0
|
208 |
+
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
|
209 |
+
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
|
210 |
+
|
211 |
+
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
212 |
+
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
213 |
+
|
214 |
+
images = images.unsqueeze(0).to(device)
|
215 |
+
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
216 |
+
|
217 |
+
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
218 |
+
print(mesh_fpath)
|
219 |
+
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
220 |
+
mesh_dirname = os.path.dirname(mesh_fpath)
|
221 |
+
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
|
222 |
+
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
|
223 |
+
|
224 |
+
with torch.no_grad():
|
225 |
+
# get triplane
|
226 |
+
planes = model.forward_planes(images, input_cameras)
|
227 |
+
|
228 |
+
# # get video
|
229 |
+
# chunk_size = 20 if IS_FLEXICUBES else 1
|
230 |
+
# render_size = 384
|
231 |
+
|
232 |
+
# frames = []
|
233 |
+
# for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
|
234 |
+
# if IS_FLEXICUBES:
|
235 |
+
# frame = model.forward_geometry(
|
236 |
+
# planes,
|
237 |
+
# render_cameras[:, i:i+chunk_size],
|
238 |
+
# render_size=render_size,
|
239 |
+
# )['img']
|
240 |
+
# else:
|
241 |
+
# frame = model.synthesizer(
|
242 |
+
# planes,
|
243 |
+
# cameras=render_cameras[:, i:i+chunk_size],
|
244 |
+
# render_size=render_size,
|
245 |
+
# )['images_rgb']
|
246 |
+
# frames.append(frame)
|
247 |
+
# frames = torch.cat(frames, dim=1)
|
248 |
+
|
249 |
+
# images_to_video(
|
250 |
+
# frames[0],
|
251 |
+
# video_fpath,
|
252 |
+
# fps=30,
|
253 |
+
# )
|
254 |
+
|
255 |
+
# print(f"Video saved to {video_fpath}")
|
256 |
+
|
257 |
+
# get mesh
|
258 |
+
mesh_out = model.extract_mesh(
|
259 |
+
planes,
|
260 |
+
use_texture_map=False,
|
261 |
+
**infer_config,
|
262 |
+
)
|
263 |
+
|
264 |
+
vertices, faces, vertex_colors = mesh_out
|
265 |
+
vertices = vertices[:, [1, 2, 0]]
|
266 |
+
|
267 |
+
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
268 |
+
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
269 |
+
|
270 |
+
print(f"Mesh saved to {mesh_fpath}")
|
271 |
+
|
272 |
+
return mesh_fpath, mesh_glb_fpath
|
273 |
+
|
274 |
+
|
275 |
+
###############################################################################
|
276 |
+
############# above part is for 3D generate #############
|
277 |
+
###############################################################################
|
278 |
+
|
279 |
|
280 |
gpt_state = 0
|
281 |
|
|
|
990 |
submit_tts = gr.Button(value="Submit", interactive=True)
|
991 |
clear_tts = gr.Button(value="Clear", interactive=True)
|
992 |
|
993 |
+
###############################################################################
|
994 |
+
# this part is for 3d generate.
|
995 |
+
###############################################################################
|
996 |
+
|
997 |
+
with gr.Row(variant="panel"):
|
998 |
+
with gr.Column():
|
999 |
+
with gr.Row():
|
1000 |
+
input_image = gr.Image(
|
1001 |
+
label="Input Image",
|
1002 |
+
image_mode="RGBA",
|
1003 |
+
sources="upload",
|
1004 |
+
#width=256,
|
1005 |
+
#height=256,
|
1006 |
+
type="pil",
|
1007 |
+
elem_id="content_image",
|
1008 |
+
)
|
1009 |
+
processed_image = gr.Image(
|
1010 |
+
label="Processed Image",
|
1011 |
+
image_mode="RGBA",
|
1012 |
+
#width=256,
|
1013 |
+
#height=256,
|
1014 |
+
type="pil",
|
1015 |
+
interactive=False
|
1016 |
+
)
|
1017 |
+
with gr.Row():
|
1018 |
+
with gr.Group():
|
1019 |
+
do_remove_background = gr.Checkbox(
|
1020 |
+
label="Remove Background", value=True
|
1021 |
+
)
|
1022 |
+
sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
|
1023 |
+
|
1024 |
+
sample_steps = gr.Slider(
|
1025 |
+
label="Sample Steps",
|
1026 |
+
minimum=30,
|
1027 |
+
maximum=75,
|
1028 |
+
value=75,
|
1029 |
+
step=5
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
with gr.Row():
|
1033 |
+
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
1034 |
+
|
1035 |
+
with gr.Row(variant="panel"):
|
1036 |
+
gr.Examples(
|
1037 |
+
examples=[
|
1038 |
+
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
|
1039 |
+
],
|
1040 |
+
inputs=[input_image],
|
1041 |
+
label="Examples",
|
1042 |
+
cache_examples=False,
|
1043 |
+
examples_per_page=16
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
with gr.Column():
|
1047 |
+
|
1048 |
+
with gr.Row():
|
1049 |
+
|
1050 |
+
with gr.Column():
|
1051 |
+
mv_show_images = gr.Image(
|
1052 |
+
label="Generated Multi-views",
|
1053 |
+
type="pil",
|
1054 |
+
width=379,
|
1055 |
+
interactive=False
|
1056 |
+
)
|
1057 |
+
|
1058 |
+
# with gr.Column():
|
1059 |
+
# output_video = gr.Video(
|
1060 |
+
# label="video", format="mp4",
|
1061 |
+
# width=379,
|
1062 |
+
# autoplay=True,
|
1063 |
+
# interactive=False
|
1064 |
+
# )
|
1065 |
+
|
1066 |
+
with gr.Row():
|
1067 |
+
with gr.Tab("OBJ"):
|
1068 |
+
output_model_obj = gr.Model3D(
|
1069 |
+
label="Output Model (OBJ Format)",
|
1070 |
+
interactive=False,
|
1071 |
+
)
|
1072 |
+
gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
|
1073 |
+
with gr.Tab("GLB"):
|
1074 |
+
output_model_glb = gr.Model3D(
|
1075 |
+
label="Output Model (GLB Format)",
|
1076 |
+
interactive=False,
|
1077 |
+
)
|
1078 |
+
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
|
1079 |
+
|
1080 |
+
with gr.Row():
|
1081 |
+
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
|
1082 |
+
|
1083 |
+
mv_images = gr.State()
|
1084 |
+
|
1085 |
+
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
1086 |
+
fn=preprocess,
|
1087 |
+
inputs=[input_image, do_remove_background],
|
1088 |
+
outputs=[processed_image],
|
1089 |
+
).success(
|
1090 |
+
fn=generate_mvs,
|
1091 |
+
inputs=[processed_image, sample_steps, sample_seed],
|
1092 |
+
outputs=[mv_images, mv_show_images]
|
1093 |
+
|
1094 |
+
).success(
|
1095 |
+
fn=make3d,
|
1096 |
+
inputs=[mv_images],
|
1097 |
+
outputs=[output_model_obj, output_model_glb]
|
1098 |
+
)
|
1099 |
+
###############################################################################
|
1100 |
+
# above part is for 3d generate.
|
1101 |
+
###############################################################################
|
1102 |
+
|
1103 |
+
|
1104 |
def clear_tts_fields():
|
1105 |
return [gr.update(value=""), gr.update(value=""), None, None, gr.update(value=False), gr.update(value=True), None, None]
|
1106 |
|