# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from os import mkdir from os.path import exists, isdir from pathlib import Path # #! pip install streamlit import streamlit as st # + # #! pip install datasets # #! pip install powerlaw # - from data_measurements import dataset_statistics, dataset_utils from data_measurements import streamlit_utils as st_utils logs = logging.getLogger(__name__) logs.setLevel(logging.WARNING) logs.propagate = False if not logs.handlers: Path('./log_files').mkdir(exist_ok=True) # Logging info to log file file = logging.FileHandler("./log_files/app.log") fileformat = logging.Formatter("%(asctime)s:%(message)s") file.setLevel(logging.INFO) file.setFormatter(fileformat) # Logging debug messages to stream stream = logging.StreamHandler() streamformat = logging.Formatter("[data_measurements_tool] %(message)s") stream.setLevel(logging.WARNING) stream.setFormatter(streamformat) logs.addHandler(file) logs.addHandler(stream) st.set_page_config( page_title="Demo to showcase dataset metrics", page_icon="https://huggingface.co/front/assets/huggingface_logo.svg", layout="wide", initial_sidebar_state="auto", ) # colorblind-friendly colors colors = [ "#332288", "#117733", "#882255", "#AA4499", "#CC6677", "#44AA99", "#DDCC77", "#88CCEE", ] CACHE_DIR = dataset_utils.CACHE_DIR # String names we are using (not coming from the stored dataset). OUR_TEXT_FIELD = dataset_utils.OUR_TEXT_FIELD OUR_LABEL_FIELD = dataset_utils.OUR_LABEL_FIELD TOKENIZED_FIELD = dataset_utils.TOKENIZED_FIELD EMBEDDING_FIELD = dataset_utils.EMBEDDING_FIELD LENGTH_FIELD = dataset_utils.LENGTH_FIELD # TODO: Allow users to specify this. _MIN_VOCAB_COUNT = 10 _SHOW_TOP_N_WORDS = 10 @st.cache( hash_funcs={ dataset_statistics.DatasetStatisticsCacheClass: lambda dstats: dstats.cache_path }, allow_output_mutation=True, ) def load_or_prepare(ds_args, show_embeddings, use_cache=False): """ Takes the dataset arguments from the GUI and uses them to load a dataset from the Hub or, if a cache for those arguments is available, to load it from the cache. Args: ds_args (dict): the dataset arguments defined via the streamlit app GUI show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset use_cache (Bool) : whether the cache is used by default or not Returns: dstats: the computed dataset statistics (from the dataset_statistics class) """ if not isdir(CACHE_DIR): logs.warning("Creating cache") # We need to preprocess everything. # This should eventually all go into a prepare_dataset CLI mkdir(CACHE_DIR) if use_cache: logs.warning("Using cache") dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args, use_cache=use_cache) logs.warning("Loading dataset") dstats.load_or_prepare_dataset() if show_embeddings: logs.warning("Loading Embeddings") dstats.load_or_prepare_embeddings() logs.warning("Loading nPMI") try: dstats.load_or_prepare_npmi() except: logs.warning("Missing a cache for npmi") return dstats @st.cache( hash_funcs={ dataset_statistics.DatasetStatisticsCacheClass: lambda dstats: dstats.cache_path }, allow_output_mutation=True, ) def load_or_prepare_widgets(ds_args, show_embeddings, use_cache=False): """ Loader specifically for the widgets used in the app. Args: ds_args: show_embeddings: use_cache: Returns: """ if use_cache: logs.warning("Using cache") if True: #try: dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args, use_cache=use_cache) # Don't recalculate; we're live dstats.set_deployment(True) # checks whether the cache_dir exists in deployment mode # creates cache_dir if not and if in development mode cache_dir_exists = dstats.check_cache_dir() #except: # logs.warning("We're screwed") if cache_dir_exists: try: # We need to have the text_dset loaded for further load_or_prepare dstats.load_or_prepare_dataset() except: logs.warning("Missing a cache for load or prepare dataset") try: # Header widget dstats.load_or_prepare_dset_peek() except: logs.warning("Missing a cache for dset peek") if show_embeddings: try: # Embeddings widget dstats.load_or_prepare_embeddings() except: logs.warning("Missing a cache for embeddings") try: dstats.load_or_prepare_text_duplicates() except: logs.warning("Missing a cache for text duplicates") try: dstats.load_or_prepare_npmi() except: logs.warning("Missing a cache for npmi") return dstats, cache_dir_exists def show_column(dstats, ds_name_to_dict, show_embeddings, column_id): """ Function for displaying the elements in the right column of the streamlit app. Args: ds_name_to_dict (dict): the dataset name and options in dictionary form show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset column_id (str): what column of the dataset the analysis is done on Returns: The function displays the information using the functions defined in the st_utils class. """ # Note that at this point we assume we can use cache; default value is True. # start showing stuff title_str = f"### Showing{column_id}: {dstats.dset_name} - {dstats.dset_config} - {dstats.split_name} - {'-'.join(dstats.text_field)}" st.markdown(title_str) # Uses an interaction; handled a bit differently than other widgets. logs.info("showing npmi widget") st_utils.npmi_widget(dstats.npmi_stats, _MIN_VOCAB_COUNT, column_id) if show_embeddings: st_utils.expander_text_embeddings( dstats.text_dset, dstats.fig_tree, dstats.node_list, dstats.embeddings, OUR_TEXT_FIELD, column_id, ) def main(): """ Sidebar description and selection """ ds_name_to_dict = dataset_utils.get_dataset_info_dicts() st.title("Data Measurements Tool") # Get the sidebar details st_utils.sidebar_header() # Set up naming, configs, and cache path. compare_mode = st.sidebar.checkbox("Comparison mode") # When not doing new development, use the cache. use_cache = True show_embeddings = st.sidebar.checkbox("Show text clusters") # List of datasets for which embeddings are hard to compute: if compare_mode: logs.warning("Using Comparison Mode") dataset_args_left = st_utils.sidebar_selection(ds_name_to_dict, " A") dataset_args_right = st_utils.sidebar_selection(ds_name_to_dict, " B") left_col, _, right_col = st.columns([10, 1, 10]) dstats_left, cache_exists_left = load_or_prepare_widgets( dataset_args_left, show_embeddings, use_cache=use_cache ) with left_col: if cache_exists_left: show_column(dstats_left, ds_name_to_dict, show_embeddings, " A") else: st.markdown("### Missing pre-computed data measures!") st.write(dataset_args_left) dstats_right, cache_exists_right = load_or_prepare_widgets( dataset_args_right, show_embeddings, use_cache=use_cache ) with right_col: if cache_exists_right: show_column(dstats_right, ds_name_to_dict, show_embeddings, " B") else: st.markdown("### Missing pre-computed data measures!") st.write(dataset_args_right) else: logs.warning("Using Single Dataset Mode") dataset_args = st_utils.sidebar_selection(ds_name_to_dict, "") dstats, cache_exists = load_or_prepare_widgets(dataset_args, show_embeddings, use_cache=use_cache) if cache_exists: show_column(dstats, ds_name_to_dict, show_embeddings, "") else: st.markdown("### Missing pre-computed data measures!") st.write(dataset_args) if __name__ == "__main__": main()