FALSHEIKHI commited on
Commit
d17fd09
1 Parent(s): 95bb032

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -18
app.py CHANGED
@@ -8,9 +8,6 @@ from sklearn.metrics.pairwise import cosine_similarity
8
  import numpy as np
9
  import pandas as pd
10
  from transformers import pipeline
11
- import subprocess
12
- subprocess.run(["pythom","-m", "spacy","download","en_core_web_sm"])
13
- import spacy
14
 
15
 
16
  df = pd.read_csv("df_end.csv")
@@ -19,22 +16,9 @@ nlp = spacy.load("en_core_web_sm")
19
  cities = df['locality'].unique()
20
 
21
 
22
- def extract_city(query,cities):
23
- city = None
24
- doc = nlp(query)
25
- for ent in doc.ents:
26
- if ent.label_ == "GPE": # Geo-Political Entity
27
- # Assuming the entity is a city
28
- return ent.text
29
- print(cities)
30
- if city in cities :
31
- df_to_test = df_to_test.loc[df_to_test['locality'] == city]
32
- print(f"City found: {city}")
33
- else:
34
- print("No city found.")
35
- return city
36
 
37
  def filter_and_rank_by_similarity_sentiment_ranking(query, df, model,cities, k):
 
38
  city = extract_city(query, cities)
39
  cities = df['locality'].unique()
40
  if city in cities:
@@ -43,7 +27,6 @@ def filter_and_rank_by_similarity_sentiment_ranking(query, df, model,cities, k):
43
  else:
44
  print("No city found.")
45
 
46
-
47
  query_embedding = model.encode(query)
48
  embeddings_matrix = np.stack(df['embedding'].values)
49
  similarities = cosine_similarity([query_embedding], embeddings_matrix).flatten()
 
8
  import numpy as np
9
  import pandas as pd
10
  from transformers import pipeline
 
 
 
11
 
12
 
13
  df = pd.read_csv("df_end.csv")
 
16
  cities = df['locality'].unique()
17
 
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  def filter_and_rank_by_similarity_sentiment_ranking(query, df, model,cities, k):
21
+ city = [word for word in query.split() if word in cities][0]
22
  city = extract_city(query, cities)
23
  cities = df['locality'].unique()
24
  if city in cities:
 
27
  else:
28
  print("No city found.")
29
 
 
30
  query_embedding = model.encode(query)
31
  embeddings_matrix = np.stack(df['embedding'].values)
32
  similarities = cosine_similarity([query_embedding], embeddings_matrix).flatten()