Spaces:
Runtime error
Runtime error
File size: 2,683 Bytes
5285b7f 42c019f 5285b7f fe9a4a8 5285b7f 42c019f 86f28e8 42c019f 86f28e8 a7e030a 42c019f 5285b7f 568e03b 86f28e8 42c019f 86f28e8 d29b90a 42c019f 84d265e 42c019f 7725e91 42c019f 5285b7f 7725e91 42c019f 5285b7f 42c019f 568e03b 42c019f 9656b2d 7725e91 42c019f 5285b7f 42c019f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import datasets
import numpy as np
import torch
import transformers
from config import epochs, batch_size, learning_rate, id2label
from model import tokenizer, multitask_model
from mtm import MultitaskTrainer, NLPDataCollator, DataLoaderWithTaskname
import pandas as pd
from datasets import Dataset, DatasetDict
from data_predict import convert_to_stsb_features,convert_to_features
import gradio as gr
from huggingface_hub import hf_hub_download,snapshot_download
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Version 1 - Croatian Document + Slovenian Document.
model_link = hf_hub_download(repo_id="FFZG-cleopatra/Croatian-Document-News-Sentiment-Classifier",filename = "pytorch_model.bin")
multitask_model.load_state_dict(torch.load(model_link, map_location=device))
multitask_model.to(device)
def predict_sentiment(sentence = "Volim ti"):
# gather everyone if you want to have a single DatasetDict
document = DatasetDict({
# "train": Dataset.from_pandas(df_document_sl_hr_train),
# "valid": Dataset.from_pandas(df_document_sl_hr_valid),
"test": Dataset.from_dict({"content":[sentence]})
})
dataset_dict = {
"document": document,
}
for task_name, dataset in dataset_dict.items():
print(task_name)
print(dataset_dict[task_name]["test"][0])
print()
convert_func_dict = {
"document": convert_to_stsb_features,
# "paragraph": convert_to_stsb_features,
# "sentence": convert_to_stsb_features,
}
features_dict = convert_to_features(dataset_dict, convert_func_dict)
predictions = []
for _, batch in enumerate(features_dict["document"]['test']):
for key, value in batch.items():
batch[key] = batch[key].to(device)
task_model = multitask_model.get_model("document")
classifier_output = task_model.forward(
torch.unsqueeze(batch["input_ids"], 0),
torch.unsqueeze(batch["attention_mask"], 0),)
print(tokenizer.decode(batch["input_ids"],skip_special_tokens=True))
print("logits:",classifier_output.logits)
prediction =torch.max(classifier_output.logits, axis=1)
predictions.append(prediction.indices.item())
print("predictions:", predictions[0] , id2label[predictions[0]] )
return id2label[predictions[0]]
interface = gr.Interface(
fn=predict_sentiment,
inputs='text',
outputs=['label'],
title='Croatian News Sentiment Analysis 1.0',
description='Get the positive/neutral/negative sentiment for the given input.'
)
interface.launch(inline = False)
|