Spaces:
Runtime error
Runtime error
Create mtm.py
Browse files
mtm.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.utils.data.sampler import RandomSampler
|
5 |
+
from torch.utils.data.distributed import DistributedSampler
|
6 |
+
from torch.utils.data.dataloader import DataLoader
|
7 |
+
from transformers.data.data_collator import DataCollator
|
8 |
+
from transformers.data.data_collator import DataCollatorWithPadding, InputDataClass
|
9 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
10 |
+
from transformers import is_torch_tpu_available
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
class MultitaskModel(transformers.PreTrainedModel):
|
14 |
+
def __init__(self, encoder, taskmodels_dict):
|
15 |
+
"""
|
16 |
+
Setting MultitaskModel up as a PretrainedModel allows us
|
17 |
+
to take better advantage of Trainer features
|
18 |
+
"""
|
19 |
+
super().__init__(transformers.PretrainedConfig())
|
20 |
+
|
21 |
+
self.encoder = encoder
|
22 |
+
self.taskmodels_dict = nn.ModuleDict(taskmodels_dict)
|
23 |
+
|
24 |
+
@classmethod
|
25 |
+
def create(cls, model_name, model_type_dict, model_config_dict):
|
26 |
+
"""
|
27 |
+
This creates a MultitaskModel using the model class and config objects
|
28 |
+
from single-task models.
|
29 |
+
|
30 |
+
We do this by creating each single-task model, and having them share
|
31 |
+
the same encoder transformer.
|
32 |
+
"""
|
33 |
+
shared_encoder = None
|
34 |
+
taskmodels_dict = {}
|
35 |
+
do = nn.Dropout(p=0.2)
|
36 |
+
for task_name, model_type in model_type_dict.items():
|
37 |
+
model = model_type.from_pretrained(
|
38 |
+
model_name,
|
39 |
+
config=model_config_dict[task_name],
|
40 |
+
)
|
41 |
+
if shared_encoder is None:
|
42 |
+
shared_encoder = getattr(
|
43 |
+
model, cls.get_encoder_attr_name(model))
|
44 |
+
else:
|
45 |
+
setattr(model, cls.get_encoder_attr_name(
|
46 |
+
model), shared_encoder)
|
47 |
+
taskmodels_dict[task_name] = model
|
48 |
+
return cls(encoder=shared_encoder, taskmodels_dict=taskmodels_dict)
|
49 |
+
|
50 |
+
@classmethod
|
51 |
+
def get_encoder_attr_name(cls, model):
|
52 |
+
"""
|
53 |
+
The encoder transformer is named differently in each model "architecture".
|
54 |
+
This method lets us get the name of the encoder attribute
|
55 |
+
"""
|
56 |
+
model_class_name = model.__class__.__name__
|
57 |
+
if model_class_name.startswith("Bert"):
|
58 |
+
return "bert"
|
59 |
+
elif model_class_name.startswith("Roberta"):
|
60 |
+
return "roberta"
|
61 |
+
elif model_class_name.startswith("Albert"):
|
62 |
+
return "albert"
|
63 |
+
else:
|
64 |
+
raise KeyError(f"Add support for new model {model_class_name}")
|
65 |
+
|
66 |
+
def forward(self, task_name, **kwargs):
|
67 |
+
return self.taskmodels_dict[task_name](**kwargs)
|
68 |
+
|
69 |
+
def get_model(self, task_name):
|
70 |
+
return self.taskmodels_dict[task_name]
|
71 |
+
|
72 |
+
class NLPDataCollator(DataCollatorWithPadding): # DataCollatorWithPadding
|
73 |
+
"""
|
74 |
+
Extending the existing DataCollator to work with NLP dataset batches
|
75 |
+
"""
|
76 |
+
|
77 |
+
def collate_batch(self, features: List[Union[InputDataClass, Dict]]) -> Dict[str, torch.Tensor]:
|
78 |
+
first = features[0]
|
79 |
+
batch = None
|
80 |
+
if isinstance(first, dict):
|
81 |
+
# NLP data sets current works presents features as lists of dictionary
|
82 |
+
# (one per example), so we will adapt the collate_batch logic for that
|
83 |
+
if "labels" in first and first["labels"] is not None:
|
84 |
+
if first["labels"].dtype == torch.int64:
|
85 |
+
labels = torch.tensor([f["labels"]
|
86 |
+
for f in features], dtype=torch.long)
|
87 |
+
else:
|
88 |
+
labels = torch.tensor([f["labels"]
|
89 |
+
for f in features], dtype=torch.float)
|
90 |
+
batch = {"labels": labels}
|
91 |
+
for k, v in first.items():
|
92 |
+
if k != "labels" and v is not None and not isinstance(v, str):
|
93 |
+
batch[k] = torch.stack([f[k] for f in features])
|
94 |
+
return batch
|
95 |
+
else:
|
96 |
+
# otherwise, revert to using the default collate_batch
|
97 |
+
return DataCollatorWithPadding().collate_batch(features)
|
98 |
+
|
99 |
+
|
100 |
+
class StrIgnoreDevice(str):
|
101 |
+
"""
|
102 |
+
This is a hack. The Trainer is going call .to(device) on every input
|
103 |
+
value, but we need to pass in an additional `task_name` string.
|
104 |
+
This prevents it from throwing an error
|
105 |
+
"""
|
106 |
+
|
107 |
+
def to(self, device):
|
108 |
+
return self
|
109 |
+
|
110 |
+
|
111 |
+
class DataLoaderWithTaskname:
|
112 |
+
"""
|
113 |
+
Wrapper around a DataLoader to also yield a task name
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(self, task_name, data_loader):
|
117 |
+
self.task_name = task_name
|
118 |
+
self.data_loader = data_loader
|
119 |
+
|
120 |
+
self.batch_size = data_loader.batch_size
|
121 |
+
self.dataset = data_loader.dataset
|
122 |
+
|
123 |
+
def __len__(self):
|
124 |
+
return len(self.data_loader)
|
125 |
+
|
126 |
+
def __iter__(self):
|
127 |
+
for batch in self.data_loader:
|
128 |
+
batch["task_name"] = StrIgnoreDevice(self.task_name)
|
129 |
+
yield batch
|
130 |
+
|
131 |
+
|
132 |
+
class MultitaskDataloader:
|
133 |
+
"""
|
134 |
+
Data loader that combines and samples from multiple single-task
|
135 |
+
data loaders.
|
136 |
+
"""
|
137 |
+
|
138 |
+
def __init__(self, dataloader_dict):
|
139 |
+
self.dataloader_dict = dataloader_dict
|
140 |
+
self.num_batches_dict = {
|
141 |
+
task_name: len(dataloader)
|
142 |
+
for task_name, dataloader in self.dataloader_dict.items()
|
143 |
+
}
|
144 |
+
self.task_name_list = list(self.dataloader_dict)
|
145 |
+
self.dataset = [None] * sum(
|
146 |
+
len(dataloader.dataset)
|
147 |
+
for dataloader in self.dataloader_dict.values()
|
148 |
+
)
|
149 |
+
|
150 |
+
def __len__(self):
|
151 |
+
return sum(self.num_batches_dict.values())
|
152 |
+
|
153 |
+
def __iter__(self):
|
154 |
+
"""
|
155 |
+
For each batch, sample a task, and yield a batch from the respective
|
156 |
+
task Dataloader.
|
157 |
+
|
158 |
+
We use size-proportional sampling, but you could easily modify this
|
159 |
+
to sample from some-other distribution.
|
160 |
+
"""
|
161 |
+
task_choice_list = []
|
162 |
+
for i, task_name in enumerate(self.task_name_list):
|
163 |
+
task_choice_list += [i] * self.num_batches_dict[task_name]
|
164 |
+
task_choice_list = np.array(task_choice_list)
|
165 |
+
np.random.shuffle(task_choice_list)
|
166 |
+
dataloader_iter_dict = {
|
167 |
+
task_name: iter(dataloader)
|
168 |
+
for task_name, dataloader in self.dataloader_dict.items()
|
169 |
+
}
|
170 |
+
for task_choice in task_choice_list:
|
171 |
+
task_name = self.task_name_list[task_choice]
|
172 |
+
yield next(dataloader_iter_dict[task_name])
|
173 |
+
|
174 |
+
|
175 |
+
class MultitaskTrainer(transformers.Trainer):
|
176 |
+
|
177 |
+
def get_single_train_dataloader(self, task_name, train_dataset):
|
178 |
+
"""
|
179 |
+
Create a single-task data loader that also yields task names
|
180 |
+
"""
|
181 |
+
if self.train_dataset is None:
|
182 |
+
raise ValueError("Trainer: training requires a train_dataset.")
|
183 |
+
if False and is_torch_tpu_available():
|
184 |
+
train_sampler = get_tpu_sampler(train_dataset)
|
185 |
+
else:
|
186 |
+
train_sampler = (
|
187 |
+
RandomSampler(train_dataset)
|
188 |
+
if self.args.local_rank == -1
|
189 |
+
else DistributedSampler(train_dataset)
|
190 |
+
)
|
191 |
+
|
192 |
+
data_loader = DataLoaderWithTaskname(
|
193 |
+
task_name=task_name,
|
194 |
+
data_loader=DataLoader(
|
195 |
+
train_dataset,
|
196 |
+
batch_size=self.args.train_batch_size,
|
197 |
+
sampler=train_sampler,
|
198 |
+
collate_fn=self.data_collator.collate_batch,
|
199 |
+
),
|
200 |
+
)
|
201 |
+
return data_loader
|
202 |
+
|
203 |
+
def get_train_dataloader(self):
|
204 |
+
"""
|
205 |
+
Returns a MultitaskDataloader, which is not actually a Dataloader
|
206 |
+
but an iterable that returns a generator that samples from each
|
207 |
+
task Dataloader
|
208 |
+
"""
|
209 |
+
return MultitaskDataloader({
|
210 |
+
task_name: self.get_single_train_dataloader(
|
211 |
+
task_name, task_dataset)
|
212 |
+
for task_name, task_dataset in self.train_dataset.items()
|
213 |
+
})
|
214 |
+
|