Spaces:
Runtime error
Runtime error
import numpy as np | |
import os | |
import gradio as gr | |
import torch | |
from PIL import image | |
os.environ["WANDB_DISABLED"] = "true" | |
from datasets import load_dataset, load_metric | |
from transformers import ( | |
AutoConfig, | |
AutoModelForSequenceClassification, | |
AutoTokenizer, | |
TrainingArguments, | |
logging, | |
pipeline | |
) | |
id2label = {0: "negative", 1: "neutral", 2: "positive"} | |
label2id = {"negative": 0, "neutral": 1, "positive": 2} | |
model = AutoModelForSequenceClassification.from_pretrained( | |
model="FFZG-cleopatra/M2SA", | |
num_labels=3, id2label=id2label, | |
label2id=label2id | |
) | |
def predict_sentiment(text, image): | |
print(text, image) | |
prediction = None | |
with torch.no_grad(): | |
model(x) | |
print(analyzer(x)) | |
return prediction | |
interface = gr.Interface( | |
fn=lambda text, image: predict_sentiment(text, image), | |
inputs=[gr.inputs.Textbox(),gr.inputs.Image(shape=(224, 224))], | |
outputs=['text'], | |
title='Multilingual-Multimodal-Sentiment-Analysis', | |
examples= ["I love tea","I hate coffee"], | |
description='Get the positive/neutral/negative sentiment for the given input.' | |
) | |
interface.launch(inline = False) | |