thak123's picture
Update app.py
a474c8c verified
raw
history blame
1.19 kB
import numpy as np
import os
import gradio as gr
import torch
from PIL import image
os.environ["WANDB_DISABLED"] = "true"
from datasets import load_dataset, load_metric
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
TrainingArguments,
logging,
pipeline
)
id2label = {0: "negative", 1: "neutral", 2: "positive"}
label2id = {"negative": 0, "neutral": 1, "positive": 2}
model = AutoModelForSequenceClassification.from_pretrained(
model="FFZG-cleopatra/M2SA",
num_labels=3, id2label=id2label,
label2id=label2id
)
def predict_sentiment(text, image):
print(text, image)
prediction = None
with torch.no_grad():
model(x)
print(analyzer(x))
return prediction
interface = gr.Interface(
fn=lambda text, image: predict_sentiment(text, image),
inputs=[gr.inputs.Textbox(),gr.inputs.Image(shape=(224, 224))],
outputs=['text'],
title='Multilingual-Multimodal-Sentiment-Analysis',
examples= ["I love tea","I hate coffee"],
description='Get the positive/neutral/negative sentiment for the given input.'
)
interface.launch(inline = False)