Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,44 @@
|
|
1 |
import numpy as np
|
2 |
import os
|
3 |
import gradio as gr
|
|
|
|
|
4 |
|
5 |
os.environ["WANDB_DISABLED"] = "true"
|
6 |
|
7 |
from datasets import load_dataset, load_metric
|
8 |
from transformers import (
|
9 |
AutoConfig,
|
10 |
-
|
11 |
AutoTokenizer,
|
12 |
TrainingArguments,
|
13 |
logging,
|
14 |
pipeline
|
15 |
)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
analyzer = pipeline(
|
19 |
-
"sentiment-analysis", model="FFZG-cleopatra/M2SA"
|
20 |
-
)
|
21 |
|
22 |
-
def predict_sentiment(
|
23 |
-
print(
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
interface = gr.Interface(
|
28 |
-
fn=predict_sentiment,
|
29 |
-
inputs=
|
30 |
outputs=['text'],
|
31 |
title='Multilingual-Multimodal-Sentiment-Analysis',
|
32 |
examples= ["I love tea","I hate coffee"],
|
|
|
1 |
import numpy as np
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from PIL import image
|
6 |
|
7 |
os.environ["WANDB_DISABLED"] = "true"
|
8 |
|
9 |
from datasets import load_dataset, load_metric
|
10 |
from transformers import (
|
11 |
AutoConfig,
|
12 |
+
AutoModelForSequenceClassification,
|
13 |
AutoTokenizer,
|
14 |
TrainingArguments,
|
15 |
logging,
|
16 |
pipeline
|
17 |
)
|
18 |
|
19 |
+
id2label = {0: "negative", 1: "neutral", 2: "positive"}
|
20 |
+
label2id = {"negative": 0, "neutral": 1, "positive": 2}
|
21 |
+
|
22 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
23 |
+
model="FFZG-cleopatra/M2SA",
|
24 |
+
num_labels=3, id2label=id2label,
|
25 |
+
label2id=label2id
|
26 |
+
)
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
+
def predict_sentiment(text, image):
|
30 |
+
print(text, image)
|
31 |
+
prediction = None
|
32 |
+
with torch.no_grad():
|
33 |
+
model(x)
|
34 |
+
print(analyzer(x))
|
35 |
+
|
36 |
+
return prediction
|
37 |
|
38 |
|
39 |
interface = gr.Interface(
|
40 |
+
fn=lambda text, image: predict_sentiment(text, image),,
|
41 |
+
inputs=[gr.inputs.Textbox(),gr.inputs.Image(shape=(224, 224))]
|
42 |
outputs=['text'],
|
43 |
title='Multilingual-Multimodal-Sentiment-Analysis',
|
44 |
examples= ["I love tea","I hate coffee"],
|