import numpy as np import os import gradio as gr os.environ["WANDB_DISABLED"] = "true" from datasets import load_dataset, load_metric from transformers import ( AutoConfig, # AutoModelForSequenceClassification, AutoTokenizer, TrainingArguments, logging, pipeline ) analyzer = pipeline( "sentiment-analysis", model="FFZG-cleopatra/M2SA-text-only" ) def predict_sentiment(x): print(analyzer(x)) return analyzer(x)[0]["label"] interface = gr.Interface( fn=predict_sentiment, inputs='text', outputs=['text'], title='Multilingual-Multimodal-Sentiment-Analysis', examples= ["I love tea","I hate coffee"], description='Get the positive/neutral/negative sentiment for the given input.' ) interface.launch(inline = False)