Spaces:
Sleeping
Sleeping
import torch | |
import config | |
def categorical_accuracy(preds, y): | |
""" | |
Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8 | |
""" | |
max_preds = preds.argmax( | |
dim=1, keepdim=True) # get the index of the max probability | |
correct = max_preds.squeeze(1).eq(y) | |
return correct.sum() / torch.FloatTensor([y.shape[0]]) | |
def label_encoder(x): | |
label_vec = {"0": 0, "1": 1, "-1": 2} | |
return label_vec[x.replace("__label__", "")] | |
def label_decoder(x): | |
label_vec = { 0:"U", 1:"P", 2:"N"} | |
return label_vec[x] | |
def label_full_decoder(x): | |
label_vec = { 0:"Neutral", 1:"Positive", 2:"Negative"} | |
return label_vec[x] | |