idlebg commited on
Commit
c47ce48
1 Parent(s): 6a6d8ca

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +329 -0
app.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import os
3
+ import re
4
+ import gc
5
+ import json
6
+ import time
7
+ import base64
8
+ import io
9
+ import tempfile
10
+ import zipfile
11
+ import PIL
12
+ from dataclasses import dataclass
13
+ from io import BytesIO
14
+ def sanitize_filename(filename):
15
+ """Sanitizes a filename by replacing special characters with underscores"""
16
+ return re.sub(r'[\\/*?:"<>|]', "_", filename)
17
+
18
+ from typing import Optional, Literal, Union
19
+ from diffusers import DiffusionPipeline, DDIMScheduler
20
+ HF_TOKEN = os.environ.get("HF_TOKEN")
21
+ import streamlit as st
22
+ st.set_page_config(layout="wide")
23
+ import torch
24
+ from diffusers import (
25
+ StableDiffusionPipeline,
26
+ EulerDiscreteScheduler,
27
+ StableDiffusionInpaintPipeline,
28
+ StableDiffusionImg2ImgPipeline,
29
+ )
30
+ from PIL import Image
31
+ from PIL.PngImagePlugin import PngInfo
32
+
33
+ from datetime import datetime
34
+ from threading import Thread
35
+
36
+ import requests
37
+
38
+ from huggingface_hub import HfApi
39
+ from huggingface_hub.utils._errors import RepositoryNotFoundError
40
+ from huggingface_hub.utils._validators import HFValidationError
41
+ from loguru import logger
42
+ from PIL.PngImagePlugin import PngInfo
43
+ from st_clickable_images import clickable_images
44
+
45
+ import streamlit.components.v1 as components
46
+
47
+ prefix = 'image_generation'
48
+
49
+ def dict_to_style(d):
50
+ return ';'.join(f'{k}:{v}' for k, v in d.items())
51
+
52
+ def clickable_images(images, titles, div_style={}, img_style={}):
53
+ """Generates a component with clickable images"""
54
+ img_tag = "".join(
55
+ f'<a href="{img}" target="_blank"><img src="{img}" title="{title}" style="{dict_to_style(img_style)}"></a>'
56
+ for img, title in zip(images, titles)
57
+ )
58
+ return components.html(f'<div style="{dict_to_style(div_style)}">{img_tag}</div>', scrolling=True)
59
+
60
+ def display_and_download_images(output_images, metadata):
61
+ with st.spinner("Preparing images..."):
62
+ # save images to a temporary directory
63
+ with tempfile.TemporaryDirectory() as tmpdir:
64
+ gallery_images = []
65
+ for i, image in enumerate(output_images):
66
+ image.save(os.path.join(tmpdir, f"{i + 1}.png"), pnginfo=metadata)
67
+ with open(os.path.join(tmpdir, f"{i + 1}.png"), "rb") as img:
68
+ encoded = base64.b64encode(img.read()).decode()
69
+ gallery_images.append(f"data:image/png;base64,{encoded}")
70
+
71
+ _ = clickable_images(
72
+ gallery_images,
73
+ titles=[f"Image #{str(i + 1)}" for i in range(len(gallery_images))],
74
+ div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
75
+ img_style={"margin": "5px", "height": "200px"},
76
+ )
77
+
78
+
79
+ PIPELINE_NAMES = Literal["txt2img", "inpaint", "img2img"]
80
+
81
+ DEFAULT_PROMPT = "a sprinkled donut sitting on top of a purple cherry apple with ice cubes, colorful hyperrealism, digital explosion of vibrant colors and abstract digital elements"
82
+ DEFAULT_WIDTH, DEFAULT_HEIGHT = 512, 512
83
+ OUTPUT_IMAGE_KEY = "output_img"
84
+ LOADED_IMAGE_KEY = "loaded_image"
85
+
86
+
87
+
88
+ def get_image(key: str) -> Optional[Image.Image]:
89
+ if key in st.session_state:
90
+ return st.session_state[key]
91
+ return None
92
+
93
+
94
+ def set_image(key: str, img: Image.Image):
95
+ st.session_state[key] = img
96
+
97
+
98
+ @st.cache_resource(max_entries=1)
99
+ def get_pipeline(
100
+ name: PIPELINE_NAMES,
101
+ ) -> Union[
102
+ StableDiffusionPipeline,
103
+ StableDiffusionImg2ImgPipeline,
104
+ StableDiffusionInpaintPipeline,
105
+ ]:
106
+ if name in ["txt2img", "img2img"]:
107
+ model_id = "FFusion/FFusion-BaSE"
108
+
109
+ pipeline = DiffusionPipeline.from_pretrained(model_id)
110
+ # switch the scheduler in the pipeline to use the DDIMScheduler
111
+ pipeline.scheduler = DDIMScheduler.from_config(
112
+ pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
113
+ )
114
+ pipeline = pipeline.to("cuda")
115
+ return pipeline
116
+
117
+
118
+ def generate(
119
+ prompt,
120
+ pipeline_name: PIPELINE_NAMES,
121
+ num_images=1,
122
+ negative_prompt=None,
123
+ steps=22,
124
+ width=896,
125
+ height=1024,
126
+ guidance_scale=6,
127
+ enable_attention_slicing=True,
128
+ enable_xformers=True
129
+ ):
130
+ """Generates an image based on the given prompt and pipeline name"""
131
+ negative_prompt = negative_prompt if negative_prompt else None
132
+ p = st.progress(0)
133
+ callback = lambda step, *_: p.progress(step / steps)
134
+
135
+ pipe = get_pipeline(pipeline_name)
136
+ torch.cuda.empty_cache()
137
+
138
+ if enable_attention_slicing:
139
+ pipe.enable_attention_slicing()
140
+ else:
141
+ pipe.disable_attention_slicing()
142
+
143
+ if enable_xformers:
144
+ pipe.enable_xformers_memory_efficient_attention()
145
+
146
+ kwargs = dict(
147
+ prompt=prompt,
148
+ negative_prompt=negative_prompt,
149
+ num_inference_steps=steps,
150
+ callback=callback,
151
+ guidance_scale=guidance_scale,
152
+ guidance_rescale=0.7
153
+ )
154
+ print("kwargs", kwargs)
155
+
156
+ if pipeline_name == "txt2img":
157
+ kwargs.update(width=width, height=height)
158
+
159
+ elif pipeline_name in ["inpaint", "img2img"]:
160
+ kwargs.update(image_input=image_input)
161
+
162
+ else:
163
+ raise Exception(
164
+ f"Cannot generate image for pipeline {pipeline_name} and {prompt}"
165
+ )
166
+
167
+ output_images = [] # list to hold output image objects
168
+ for _ in range(num_images): # loop over number of images
169
+ result = pipe(**kwargs) # generate one image at a time
170
+ images = result.images
171
+ for i, image in enumerate(images): # loop over each image
172
+ filename = (
173
+ "data/"
174
+ + sanitize_filename(re.sub(r"\s+", "_", prompt)[:50])
175
+ + f"_{i}_{datetime.now().timestamp()}"
176
+ )
177
+ image.save(f"{filename}.png")
178
+ output_images.append(image) # add the image object to the list
179
+
180
+ for image in output_images:
181
+ with open(f"{filename}.txt", "w") as f:
182
+ f.write(prompt)
183
+
184
+ return output_images # return the list of image objects
185
+
186
+
187
+
188
+ def prompt_and_generate_button(prefix, pipeline_name: PIPELINE_NAMES, **kwargs):
189
+ prompt = st.text_area(
190
+ "Prompt",
191
+ value=DEFAULT_PROMPT,
192
+ key=f"{prefix}-prompt",
193
+ )
194
+ negative_prompt = st.text_area(
195
+ "Negative prompt",
196
+ value="(disfigured), bad quality, ((bad art)), ((deformed)), ((extra limbs)), (((duplicate))), ((morbid)), (((ugly)), blurry, ((bad anatomy)), (((bad proportions))), cloned face, body out of frame, out of frame, bad anatomy, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), (fused fingers), (too many fingers), (((long neck))), Deformed, blurry",
197
+ key=f"{prefix}-negative-prompt",
198
+ )
199
+ col1, col2 = st.columns(2)
200
+ with col1:
201
+ steps = st.slider("Number of inference steps", min_value=11, max_value=69, value=14, key=f"{prefix}-inference-steps")
202
+ with col2:
203
+ guidance_scale = st.slider(
204
+ "Guidance scale", min_value=0.0, max_value=20.0, value=7.5, step=0.5, key=f"{prefix}-guidance-scale"
205
+ )
206
+ # enable_attention_slicing = st.checkbox('Enable attention slicing (enables higher resolutions but is slower)', key=f"{prefix}-attention-slicing", value=True)
207
+ # enable_xformers = st.checkbox('Enable xformers library (better memory usage)', key=f"{prefix}-xformers", value=True)
208
+ num_images = st.slider("Number of images to generate", min_value=1, max_value=4, value=1, key=f"{prefix}-num-images")
209
+
210
+ images = []
211
+
212
+
213
+ if st.button("Generate images", key=f"{prefix}-btn"):
214
+ with st.spinner("Generating image..."):
215
+ images = generate(
216
+ prompt,
217
+ pipeline_name,
218
+ num_images=num_images, # add this
219
+ negative_prompt=negative_prompt,
220
+ steps=steps,
221
+ guidance_scale=guidance_scale,
222
+ enable_attention_slicing=True, # value always set to True
223
+ enable_xformers=True, # value always set to True
224
+ **kwargs,
225
+ )
226
+
227
+ for i, image in enumerate(images): # loop over each image
228
+ set_image(f"{OUTPUT_IMAGE_KEY}_{i}", image.copy()) # save each image with a unique key
229
+
230
+
231
+ image_indices = [int(key.split('_')[-1]) for key in st.session_state.keys() if OUTPUT_IMAGE_KEY in key]
232
+ cols = st.columns(len(image_indices) if image_indices else 1) # create a column for each image or a single one if no images
233
+ for i in range(max(image_indices) + 1 if image_indices else 1): # loop over each image index
234
+ output_image_key = f"{OUTPUT_IMAGE_KEY}_{i}"
235
+ output_image = get_image(output_image_key)
236
+ if output_image:
237
+ cols[i].image(output_image)
238
+
239
+
240
+
241
+ def width_and_height_sliders(prefix):
242
+ col1, col2 = st.columns(2)
243
+ with col1:
244
+ width = st.slider(
245
+ "Width",
246
+ min_value=768,
247
+ max_value=1024,
248
+ step=128,
249
+ value=768,
250
+ key=f"{prefix}-width",
251
+ )
252
+ with col2:
253
+ height = st.slider(
254
+ "Height",
255
+ min_value=768,
256
+ max_value=1024,
257
+ step=128,
258
+ value=768,
259
+ key=f"{prefix}-height",
260
+ )
261
+ return width, height
262
+
263
+ data_dir = "./data" # Update with the correct path
264
+
265
+ # Get all file names in the data directory
266
+ file_names = os.listdir(data_dir)
267
+
268
+
269
+ def txt2img_tab():
270
+ prefix = "txt2img"
271
+ width, height = width_and_height_sliders(prefix)
272
+ prompt_and_generate_button(prefix, "txt2img", width=width, height=height)
273
+
274
+
275
+ def inpainting_tab():
276
+ col1, col2 = st.columns(2)
277
+
278
+ with col1:
279
+ image_input, mask_input = inpainting()
280
+
281
+ with col2:
282
+ if image_input and mask_input:
283
+ prompt_and_generate_button(
284
+ "inpaint", "inpaint", image_input=image_input, mask_input=mask_input
285
+ )
286
+
287
+
288
+ def img2img_tab():
289
+ col1, col2 = st.columns(2)
290
+
291
+ with col1:
292
+ image = image_uploader("img2img")
293
+ if image:
294
+ st.image(image)
295
+
296
+ with col2:
297
+ if image:
298
+ prompt_and_generate_button("img2img", "img2img", image_input=image)
299
+
300
+ def main():
301
+ st.title("FFusion AI -beta- Playground")
302
+
303
+ tabs = ["FFusion BaSE 768+ (txt2img)"]
304
+ selected_tab = st.selectbox("Choose a di.FFusion.ai model", tabs)
305
+
306
+ if selected_tab == "FFusion BaSE 768+ (txt2img)":
307
+ txt2img_tab()
308
+
309
+ st.header("Citation")
310
+
311
+ """
312
+ ```
313
+ @misc {ffusion_ai_2023,
314
+ author = { {FFusion AI} },
315
+ title = { FFusion-BaSE (Revision ba72848) },
316
+ year = 2023,
317
+ url = { https://huggingface.co/FFusion/FFusion-BaSE },
318
+ doi = { 10.57967/hf/0851 },
319
+ publisher = { Hugging Face }
320
+ } http://doi.org/10.57967/hf/0851
321
+ ```
322
+ """
323
+
324
+ """
325
+ Please note that the demo is intended for academic and research purposes ONLY. Any use of the demo for generating inappropriate content is strictly prohibited. The responsibility for any misuse or inappropriate use of the demo lies solely with the users who generated such content, and this demo shall not be held liable for any such use. By interacting within this environment, you hereby acknowledge and agree to the terms of the CreativeML Open RAIL-M License.
326
+ """
327
+
328
+ if __name__ == "__main__":
329
+ main()