Spaces:
Sleeping
Sleeping
import os | |
from glob import glob | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import seaborn as sns | |
from matplotlib.colors import BoundaryNorm, ListedColormap | |
all_results = pd.read_pickle("all_results.pkl") | |
def get_accuracy_dataframe(df): | |
# Calculate overall model accuracy | |
df['parsed_judge_response'] = df['parsed_judge_response'].astype(float) | |
model_accuracy = df.groupby('model_name')['parsed_judge_response'].mean().reset_index() | |
# Calculate model accuracy per difficulty level | |
df['difficulty_level'] = df['difficulty_level'].astype(int) | |
model_accuracy_per_level = df.groupby(['model_name', 'difficulty_level'])['parsed_judge_response'].mean().reset_index() | |
model_accuracy_per_level_df = model_accuracy_per_level.pivot(index='model_name', columns='difficulty_level', values='parsed_judge_response') | |
# Merge overall accuracy and level-based accuracy into a single DataFrame | |
model_accuracy_df = model_accuracy.merge(model_accuracy_per_level_df, on='model_name') | |
model_accuracy_df.rename(columns={1: 'level_1', 2: 'level_2', 3: 'level_3', 4: 'level_4', 5: 'level_5'}, inplace=True) | |
model_accuracy_df.rename(columns={'parsed_judge_response': 'Accuracy'}, inplace=True) | |
# Multiply by 100 and format to one decimal point | |
model_accuracy_df = model_accuracy_df.applymap(lambda x: round(x * 100, 1) if isinstance(x, float) else x) | |
# Add headers with icons | |
model_accuracy_df.columns = [ | |
"π€ Model Name", | |
"β Overall", | |
"π Level 1", | |
"π Level 2", | |
"π Level 3", | |
"π¬ Level 4", | |
] | |
model_accuracy_df.sort_values(by="β Overall", ascending=False, inplace=True) | |
return model_accuracy_df | |
accuracy_df = get_accuracy_dataframe(all_results) | |
# Define the column names with icons | |
headers_with_icons = [ | |
"π€ Model Name", | |
"β Overall", | |
"π Level 1", | |
"π Level 2", | |
"π Level 3", | |
"π¬ Level 4", | |
] | |
column_names = [ | |
"Model Name", | |
"Overall Accuracy", | |
"Level 1 Accuracy", | |
"Level 2 Accuracy", | |
"Level 3 Accuracy", | |
"Level 4 Accuracy", | |
] | |
def load_heatmap(evt: gr.SelectData): | |
heatmap_image = gr.Image(f"results/{evt.value}.jpg") | |
return heatmap_image | |
# # Function to process data | |
# def process_data(data): | |
# data_for_df = [] | |
# for file, df in data.items(): | |
# overall_accuracy = round(calculate_accuracy(df), 2) | |
# breakdown_accuracy = [round(acc, 2) for acc in accuracy_breakdown(df)] | |
# model_name = file.split("/")[-1].replace(".pkl", "") | |
# data_for_df.append([model_name, overall_accuracy] + breakdown_accuracy) | |
# return data_for_df | |
# # Function to finalize DataFrame | |
# def finalize_df(df): | |
# df = df.round(1) # Round to one decimal place | |
# df = df.applymap(lambda x: f"{x:.1f}" if isinstance(x, (int, float)) else x) | |
# df.columns = headers_with_icons | |
# df.sort_values(by="β Overall", ascending=False, inplace=True) | |
# # add a new column with the order (index) | |
# df["#"] = range(1, len(df) + 1) | |
# # bring rank to the first column | |
# cols = df.columns.tolist() | |
# cols = cols[-1:] + cols[:-1] | |
# df = df[cols] | |
# return df | |
def load_heatmap(evt: gr.SelectData): | |
heatmap_image = gr.Image(f"results/{evt.value}.jpg") | |
return heatmap_image | |
with gr.Blocks() as demo: | |
gr.Markdown("# FSM Benchmark Leaderboard") | |
with gr.Tab("Text-only Benchmark"): | |
leader_board = gr.Dataframe(accuracy_df, headers=headers_with_icons) | |
gr.Markdown("## Heatmap") | |
heatmap_image_qwen = gr.Image(label="", show_label=False) | |
leader_board.select(fn=load_heatmap, outputs=[heatmap_image_qwen]) | |
# with gr.Tab("Vision Benchmark", visible=False): | |
# gr.Markdown("# Vision Benchmark Leaderboard") | |
# leader_board_vision = gr.Dataframe( | |
# vision_accuracy_df, headers=headers_with_icons | |
# ) | |
# gr.Markdown("## Heatmap") | |
# heatmap_image_vision = gr.Image(label="", show_label=False) | |
# leader_board_vision.select( | |
# fn=load_vision_heatmap, outputs=[heatmap_image_vision] | |
# ) | |
# with gr.Tab("Text-only Benchmark (CoT)", visible=False): | |
# gr.Markdown("# Text-only Leaderboard (CoT)") | |
# cot_leader_board_text = gr.Dataframe( | |
# cot_text_accuracy_df, headers=headers_with_icons | |
# ) | |
# gr.Markdown("## Heatmap") | |
# cot_heatmap_image_text = gr.Image(label="", show_label=False) | |
# cot_leader_board_text.select( | |
# fn=load_cot_heatmap, outputs=[cot_heatmap_image_text] | |
# ) | |
# with gr.Tab("Constraint Text-only Results (CoT)", visible=False): | |
# gr.Markdown("## Constraint Text-only Leaderboard by first substrin (CoT)") | |
# included_models_cot = gr.CheckboxGroup( | |
# label="Models to include", | |
# choices=all_cot_text_only_models, | |
# value=all_cot_text_only_models, | |
# interactive=True, | |
# ) | |
# with gr.Row(): | |
# number_of_queries_cot = gr.Textbox(label="Number of included queries") | |
# number_of_fsms_cot = gr.Textbox(label="Number of included FSMs") | |
# constrained_leader_board_text_cot = gr.Dataframe() | |
# constrained_leader_board_plot_cot = gr.Plot() | |
# with gr.Tab("Majority Vote (Subset 1)", visible=False): | |
# gr.Markdown("## Majority Vote (Subset 1)") | |
# intersection_leader_board = gr.Dataframe( | |
# intersection_df_acc, headers=headers_with_icons | |
# ) | |
# heatmap_image = gr.Plot(label="Model Heatmap") | |
# with gr.Tab("Text-only Benchmark (deprecated)", visible=False): | |
# gr.Markdown("# Text-only Leaderboard") | |
# leader_board = gr.Dataframe(accuracy_df, headers=headers_with_icons) | |
# gr.Markdown("## Heatmap") | |
# heatmap_image = gr.Image(label="", show_label=False) | |
# leader_board.select(fn=load_heatmap, outputs=[heatmap_image]) | |
# # ============ Callbacks ============ | |
# included_models_cot.select( | |
# fn=calculate_order_by_first_substring_cot, | |
# inputs=[included_models_cot], | |
# outputs=[ | |
# constrained_leader_board_text_cot, | |
# number_of_queries_cot, | |
# number_of_fsms_cot, | |
# ], | |
# queue=True, | |
# ) | |
# constrained_leader_board_text.select( | |
# fn=show_constraint_heatmap, outputs=[constrained_leader_board_plot] | |
# ) | |
# constrained_leader_board_text_cot.select( | |
# fn=show_constraint_heatmap_cot, outputs=[constrained_leader_board_plot_cot] | |
# ) | |
# intersection_leader_board.select( | |
# fn=show_intersection_heatmap, outputs=[heatmap_image] | |
# ) | |
demo.launch() | |