Leaderboard / app.py
taesiri's picture
update
e8f4283
raw
history blame
6.78 kB
import os
from glob import glob
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from matplotlib.colors import BoundaryNorm, ListedColormap
all_results = pd.read_pickle("all_results.pkl")
def get_accuracy_dataframe(df):
# Calculate overall model accuracy
df['parsed_judge_response'] = df['parsed_judge_response'].astype(float)
model_accuracy = df.groupby('model_name')['parsed_judge_response'].mean().reset_index()
# Calculate model accuracy per difficulty level
df['difficulty_level'] = df['difficulty_level'].astype(int)
model_accuracy_per_level = df.groupby(['model_name', 'difficulty_level'])['parsed_judge_response'].mean().reset_index()
model_accuracy_per_level_df = model_accuracy_per_level.pivot(index='model_name', columns='difficulty_level', values='parsed_judge_response')
# Merge overall accuracy and level-based accuracy into a single DataFrame
model_accuracy_df = model_accuracy.merge(model_accuracy_per_level_df, on='model_name')
model_accuracy_df.rename(columns={1: 'level_1', 2: 'level_2', 3: 'level_3', 4: 'level_4', 5: 'level_5'}, inplace=True)
model_accuracy_df.rename(columns={'parsed_judge_response': 'Accuracy'}, inplace=True)
# Multiply by 100 and format to one decimal point
model_accuracy_df = model_accuracy_df.applymap(lambda x: round(x * 100, 1) if isinstance(x, float) else x)
# Add headers with icons
model_accuracy_df.columns = [
"πŸ€– Model Name",
"⭐ Overall",
"πŸ“ˆ Level 1",
"πŸ” Level 2",
"πŸ“˜ Level 3",
"πŸ”¬ Level 4",
]
model_accuracy_df.sort_values(by="⭐ Overall", ascending=False, inplace=True)
return model_accuracy_df
accuracy_df = get_accuracy_dataframe(all_results)
# Define the column names with icons
headers_with_icons = [
"πŸ€– Model Name",
"⭐ Overall",
"πŸ“ˆ Level 1",
"πŸ” Level 2",
"πŸ“˜ Level 3",
"πŸ”¬ Level 4",
]
column_names = [
"Model Name",
"Overall Accuracy",
"Level 1 Accuracy",
"Level 2 Accuracy",
"Level 3 Accuracy",
"Level 4 Accuracy",
]
def load_heatmap(evt: gr.SelectData):
heatmap_image = gr.Image(f"results/{evt.value}.jpg")
return heatmap_image
# # Function to process data
# def process_data(data):
# data_for_df = []
# for file, df in data.items():
# overall_accuracy = round(calculate_accuracy(df), 2)
# breakdown_accuracy = [round(acc, 2) for acc in accuracy_breakdown(df)]
# model_name = file.split("/")[-1].replace(".pkl", "")
# data_for_df.append([model_name, overall_accuracy] + breakdown_accuracy)
# return data_for_df
# # Function to finalize DataFrame
# def finalize_df(df):
# df = df.round(1) # Round to one decimal place
# df = df.applymap(lambda x: f"{x:.1f}" if isinstance(x, (int, float)) else x)
# df.columns = headers_with_icons
# df.sort_values(by="⭐ Overall", ascending=False, inplace=True)
# # add a new column with the order (index)
# df["#"] = range(1, len(df) + 1)
# # bring rank to the first column
# cols = df.columns.tolist()
# cols = cols[-1:] + cols[:-1]
# df = df[cols]
# return df
def load_heatmap(evt: gr.SelectData):
heatmap_image = gr.Image(f"results/{evt.value}.jpg")
return heatmap_image
with gr.Blocks() as demo:
gr.Markdown("# FSM Benchmark Leaderboard")
with gr.Tab("Text-only Benchmark"):
leader_board = gr.Dataframe(accuracy_df, headers=headers_with_icons)
gr.Markdown("## Heatmap")
heatmap_image_qwen = gr.Image(label="", show_label=False)
leader_board.select(fn=load_heatmap, outputs=[heatmap_image_qwen])
# with gr.Tab("Vision Benchmark", visible=False):
# gr.Markdown("# Vision Benchmark Leaderboard")
# leader_board_vision = gr.Dataframe(
# vision_accuracy_df, headers=headers_with_icons
# )
# gr.Markdown("## Heatmap")
# heatmap_image_vision = gr.Image(label="", show_label=False)
# leader_board_vision.select(
# fn=load_vision_heatmap, outputs=[heatmap_image_vision]
# )
# with gr.Tab("Text-only Benchmark (CoT)", visible=False):
# gr.Markdown("# Text-only Leaderboard (CoT)")
# cot_leader_board_text = gr.Dataframe(
# cot_text_accuracy_df, headers=headers_with_icons
# )
# gr.Markdown("## Heatmap")
# cot_heatmap_image_text = gr.Image(label="", show_label=False)
# cot_leader_board_text.select(
# fn=load_cot_heatmap, outputs=[cot_heatmap_image_text]
# )
# with gr.Tab("Constraint Text-only Results (CoT)", visible=False):
# gr.Markdown("## Constraint Text-only Leaderboard by first substrin (CoT)")
# included_models_cot = gr.CheckboxGroup(
# label="Models to include",
# choices=all_cot_text_only_models,
# value=all_cot_text_only_models,
# interactive=True,
# )
# with gr.Row():
# number_of_queries_cot = gr.Textbox(label="Number of included queries")
# number_of_fsms_cot = gr.Textbox(label="Number of included FSMs")
# constrained_leader_board_text_cot = gr.Dataframe()
# constrained_leader_board_plot_cot = gr.Plot()
# with gr.Tab("Majority Vote (Subset 1)", visible=False):
# gr.Markdown("## Majority Vote (Subset 1)")
# intersection_leader_board = gr.Dataframe(
# intersection_df_acc, headers=headers_with_icons
# )
# heatmap_image = gr.Plot(label="Model Heatmap")
# with gr.Tab("Text-only Benchmark (deprecated)", visible=False):
# gr.Markdown("# Text-only Leaderboard")
# leader_board = gr.Dataframe(accuracy_df, headers=headers_with_icons)
# gr.Markdown("## Heatmap")
# heatmap_image = gr.Image(label="", show_label=False)
# leader_board.select(fn=load_heatmap, outputs=[heatmap_image])
# # ============ Callbacks ============
# included_models_cot.select(
# fn=calculate_order_by_first_substring_cot,
# inputs=[included_models_cot],
# outputs=[
# constrained_leader_board_text_cot,
# number_of_queries_cot,
# number_of_fsms_cot,
# ],
# queue=True,
# )
# constrained_leader_board_text.select(
# fn=show_constraint_heatmap, outputs=[constrained_leader_board_plot]
# )
# constrained_leader_board_text_cot.select(
# fn=show_constraint_heatmap_cot, outputs=[constrained_leader_board_plot_cot]
# )
# intersection_leader_board.select(
# fn=show_intersection_heatmap, outputs=[heatmap_image]
# )
demo.launch()