Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -7,6 +7,13 @@ from matplotlib.colors import ListedColormap, BoundaryNorm
|
|
7 |
from glob import glob
|
8 |
import os
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Load text benchmark results
|
11 |
csv_results = glob("results/*.pkl")
|
12 |
# Load vision benchmark results
|
@@ -16,6 +23,7 @@ cot_text_results = glob("results-cot/*.pkl")
|
|
16 |
# Load CoT vision benchmark results
|
17 |
# cot_vision_results = glob("results-vision-CoT/*.pkl")
|
18 |
|
|
|
19 |
# Function to load data, add model type and name
|
20 |
def load_data(files, model_type):
|
21 |
data = []
|
@@ -62,6 +70,18 @@ cot_text_data = {file: pd.read_pickle(file) for file in cot_text_results}
|
|
62 |
# cot_vision_data = {file: pd.read_pickle(file) for file in cot_vision_results}
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def calculate_accuracy(df):
|
66 |
return df["parsed_judge_response"].mean() * 100
|
67 |
|
@@ -90,6 +110,7 @@ column_names = [
|
|
90 |
"Level 4 Accuracy",
|
91 |
]
|
92 |
|
|
|
93 |
# Function to process data
|
94 |
def process_data(data):
|
95 |
data_for_df = []
|
@@ -113,6 +134,7 @@ vision_accuracy_df = pd.DataFrame(vision_data_for_df, columns=column_names)
|
|
113 |
cot_text_accuracy_df = pd.DataFrame(cot_text_data_for_df, columns=column_names)
|
114 |
# cot_vision_accuracy_df = pd.DataFrame(cot_vision_data_for_df, columns=column_names)
|
115 |
|
|
|
116 |
# Function to finalize DataFrame
|
117 |
def finalize_df(df):
|
118 |
df = df.round(1) # Round to one decimal place
|
@@ -327,6 +349,63 @@ def generate_heatmap_for_specific_model_cot(model_name):
|
|
327 |
return fig
|
328 |
|
329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
def show_constraint_heatmap(evt: gr.SelectData):
|
331 |
model_name = evt.value
|
332 |
return generate_heatmap_for_specific_model(model_name)
|
@@ -337,6 +416,11 @@ def show_constraint_heatmap_cot(evt: gr.SelectData):
|
|
337 |
return generate_heatmap_for_specific_model_cot(model_name)
|
338 |
|
339 |
|
|
|
|
|
|
|
|
|
|
|
340 |
with gr.Blocks() as demo:
|
341 |
gr.Markdown("# FSM Benchmark Leaderboard")
|
342 |
with gr.Tab("Text-only Benchmark"):
|
@@ -417,6 +501,13 @@ with gr.Blocks() as demo:
|
|
417 |
constrained_leader_board_text_cot = gr.Dataframe()
|
418 |
constrained_leader_board_plot_cot = gr.Plot()
|
419 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
included_models_cot.select(
|
421 |
fn=calculate_order_by_first_substring_cot,
|
422 |
inputs=[included_models_cot],
|
@@ -436,4 +527,8 @@ with gr.Blocks() as demo:
|
|
436 |
fn=show_constraint_heatmap_cot, outputs=[constrained_leader_board_plot_cot]
|
437 |
)
|
438 |
|
|
|
|
|
|
|
|
|
439 |
demo.launch()
|
|
|
7 |
from glob import glob
|
8 |
import os
|
9 |
|
10 |
+
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import seaborn as sns
|
13 |
+
from matplotlib.colors import ListedColormap, BoundaryNorm
|
14 |
+
import pandas as pd
|
15 |
+
|
16 |
+
|
17 |
# Load text benchmark results
|
18 |
csv_results = glob("results/*.pkl")
|
19 |
# Load vision benchmark results
|
|
|
23 |
# Load CoT vision benchmark results
|
24 |
# cot_vision_results = glob("results-vision-CoT/*.pkl")
|
25 |
|
26 |
+
|
27 |
# Function to load data, add model type and name
|
28 |
def load_data(files, model_type):
|
29 |
data = []
|
|
|
70 |
# cot_vision_data = {file: pd.read_pickle(file) for file in cot_vision_results}
|
71 |
|
72 |
|
73 |
+
intersection_df = pd.read_pickle(
|
74 |
+
"./intersection_results/gpt-3.5-judge-by_Qwen_5times_intersection_subset_1.pkl"
|
75 |
+
)
|
76 |
+
# accuracy for each model
|
77 |
+
intersection_df_acc = (
|
78 |
+
intersection_df.groupby("model_name")["parsed_judge_response"].mean().reset_index()
|
79 |
+
)
|
80 |
+
intersection_df_acc["Accuracy"] = intersection_df_acc["parsed_judge_response"] * 100
|
81 |
+
intersection_df_acc.drop("parsed_judge_response", axis=1, inplace=True)
|
82 |
+
intersection_df_acc.sort_values("Accuracy", ascending=False, inplace=True)
|
83 |
+
|
84 |
+
|
85 |
def calculate_accuracy(df):
|
86 |
return df["parsed_judge_response"].mean() * 100
|
87 |
|
|
|
110 |
"Level 4 Accuracy",
|
111 |
]
|
112 |
|
113 |
+
|
114 |
# Function to process data
|
115 |
def process_data(data):
|
116 |
data_for_df = []
|
|
|
134 |
cot_text_accuracy_df = pd.DataFrame(cot_text_data_for_df, columns=column_names)
|
135 |
# cot_vision_accuracy_df = pd.DataFrame(cot_vision_data_for_df, columns=column_names)
|
136 |
|
137 |
+
|
138 |
# Function to finalize DataFrame
|
139 |
def finalize_df(df):
|
140 |
df = df.round(1) # Round to one decimal place
|
|
|
349 |
return fig
|
350 |
|
351 |
|
352 |
+
def generate_heatmap_for_intersection_model(model_name):
|
353 |
+
global intersection_df
|
354 |
+
|
355 |
+
cmap = ListedColormap(["lightblue", "red", "green"])
|
356 |
+
bounds = [-1.5, -0.5, 0.5, 1.5]
|
357 |
+
norm = BoundaryNorm(bounds, cmap.N)
|
358 |
+
|
359 |
+
# Filter for a specific model
|
360 |
+
model_df = intersection_df[intersection_df["model_name"] == model_name].copy()
|
361 |
+
|
362 |
+
if model_df.empty:
|
363 |
+
print(f"No data found for model {model_name}. Skipping heatmap generation.")
|
364 |
+
return None
|
365 |
+
|
366 |
+
model_df["fsm_info"] = model_df.apply(
|
367 |
+
lambda x: f"{x['num_states']} states, {x['num_alphabet']} alphabet", axis=1
|
368 |
+
)
|
369 |
+
model_df = model_df.sort_values(by=["num_states", "num_alphabet"])
|
370 |
+
|
371 |
+
pivot_df = (
|
372 |
+
model_df.pivot_table(
|
373 |
+
index="fsm_info",
|
374 |
+
columns="substring_index",
|
375 |
+
values="parsed_judge_response",
|
376 |
+
aggfunc="first",
|
377 |
+
)
|
378 |
+
.fillna(-1)
|
379 |
+
.astype(float)
|
380 |
+
)
|
381 |
+
|
382 |
+
# Dynamically adjust figure size
|
383 |
+
num_rows, num_cols = pivot_df.shape
|
384 |
+
fig_width = max(12, num_cols * 0.5)
|
385 |
+
fig_height = max(8, num_rows * 0.4)
|
386 |
+
|
387 |
+
fig, ax = plt.subplots(figsize=(fig_width, fig_height))
|
388 |
+
sns.heatmap(
|
389 |
+
pivot_df,
|
390 |
+
cmap=cmap,
|
391 |
+
linewidths=1,
|
392 |
+
linecolor="black",
|
393 |
+
norm=norm,
|
394 |
+
cbar=False,
|
395 |
+
square=True,
|
396 |
+
ax=ax,
|
397 |
+
)
|
398 |
+
plt.title(f"Heatmap for Model: {model_name}", fontsize=12)
|
399 |
+
plt.xlabel("Substring Index")
|
400 |
+
plt.ylabel("FSM (States, Alphabet)")
|
401 |
+
plt.xticks(rotation=45)
|
402 |
+
|
403 |
+
sns.despine(ax=ax, top=True, right=True, left=True, bottom=True)
|
404 |
+
|
405 |
+
plt.close(fig) # Prevent it from showing immediately
|
406 |
+
return fig
|
407 |
+
|
408 |
+
|
409 |
def show_constraint_heatmap(evt: gr.SelectData):
|
410 |
model_name = evt.value
|
411 |
return generate_heatmap_for_specific_model(model_name)
|
|
|
416 |
return generate_heatmap_for_specific_model_cot(model_name)
|
417 |
|
418 |
|
419 |
+
def show_intersection_heatmap(evt: gr.SelectData):
|
420 |
+
model_name = evt.value
|
421 |
+
return generate_heatmap_for_intersection_model(model_name)
|
422 |
+
|
423 |
+
|
424 |
with gr.Blocks() as demo:
|
425 |
gr.Markdown("# FSM Benchmark Leaderboard")
|
426 |
with gr.Tab("Text-only Benchmark"):
|
|
|
501 |
constrained_leader_board_text_cot = gr.Dataframe()
|
502 |
constrained_leader_board_plot_cot = gr.Plot()
|
503 |
|
504 |
+
with gr.Tab("Majority Vote (Subset 1)"):
|
505 |
+
gr.Markdown("## Majority Vote (Subset 1)")
|
506 |
+
intersection_leader_board = gr.Dataframe(
|
507 |
+
intersection_df_acc, headers=headers_with_icons
|
508 |
+
)
|
509 |
+
heatmap_image = gr.Plot(label="Model Heatmap")
|
510 |
+
|
511 |
included_models_cot.select(
|
512 |
fn=calculate_order_by_first_substring_cot,
|
513 |
inputs=[included_models_cot],
|
|
|
527 |
fn=show_constraint_heatmap_cot, outputs=[constrained_leader_board_plot_cot]
|
528 |
)
|
529 |
|
530 |
+
intersection_leader_board.select(
|
531 |
+
fn=show_intersection_heatmap, outputs=[heatmap_image]
|
532 |
+
)
|
533 |
+
|
534 |
demo.launch()
|
intersection_results/gpt-3.5-judge-by_Qwen_5times_intersection_subset_1.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1cc52129234d9667a4cc388bd1da3a2021f1bbb7ea556e20ee6d5e159b2b1a8
|
3 |
+
size 1482609
|