Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
from glob import glob
|
4 |
|
|
|
5 |
# Load text benchmark results
|
6 |
csv_results = glob("results/*.pkl")
|
7 |
# Load vision benchmark results
|
@@ -11,6 +12,35 @@ cot_text_results = glob("results-cot/*.pkl")
|
|
11 |
# Load CoT vision benchmark results
|
12 |
cot_vision_results = glob("results-vision-CoT/*.pkl")
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Load the csv files into a dict with keys being name of the file and values being the data
|
15 |
data = {file: pd.read_pickle(file) for file in csv_results}
|
16 |
# Load the vision files into a dict
|
@@ -88,6 +118,8 @@ cot_text_accuracy_df = finalize_df(cot_text_accuracy_df)
|
|
88 |
cot_vision_accuracy_df = finalize_df(cot_vision_accuracy_df)
|
89 |
|
90 |
|
|
|
|
|
91 |
def load_heatmap(evt: gr.SelectData):
|
92 |
heatmap_image = gr.Image(f"results/{evt.value}.jpg")
|
93 |
return heatmap_image
|
@@ -108,6 +140,48 @@ def load_cot_vision_heatmap(evt: gr.SelectData):
|
|
108 |
return heatmap_image
|
109 |
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
with gr.Blocks() as demo:
|
112 |
gr.Markdown("# FSM Benchmark Leaderboard")
|
113 |
with gr.Tab("Text-only Benchmark"):
|
@@ -150,4 +224,14 @@ with gr.Blocks() as demo:
|
|
150 |
fn=load_cot_vision_heatmap, outputs=[cot_heatmap_image_vision]
|
151 |
)
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
demo.launch()
|
|
|
2 |
import pandas as pd
|
3 |
from glob import glob
|
4 |
|
5 |
+
|
6 |
# Load text benchmark results
|
7 |
csv_results = glob("results/*.pkl")
|
8 |
# Load vision benchmark results
|
|
|
12 |
# Load CoT vision benchmark results
|
13 |
cot_vision_results = glob("results-vision-CoT/*.pkl")
|
14 |
|
15 |
+
# Function to load data, add model type and name
|
16 |
+
def load_data(files, model_type):
|
17 |
+
data = []
|
18 |
+
for file in files:
|
19 |
+
df = pd.read_pickle(file)
|
20 |
+
df["Model Type"] = model_type
|
21 |
+
df["Model Name"] = file.split("/")[-1].replace(".pkl", "")
|
22 |
+
data.append(df)
|
23 |
+
return pd.concat(data, ignore_index=True)
|
24 |
+
|
25 |
+
|
26 |
+
# Load and label all data
|
27 |
+
data = load_data(csv_results, "Text Only")
|
28 |
+
vision_data = load_data(vision_results, "Vision")
|
29 |
+
cot_text_data = load_data(cot_text_results, "CoT Text Only")
|
30 |
+
cot_vision_data = load_data(cot_vision_results, "CoT Vision")
|
31 |
+
|
32 |
+
# Combine all data into a single DataFrame
|
33 |
+
all_data = pd.concat(
|
34 |
+
[data, vision_data, cot_text_data, cot_vision_data], ignore_index=True
|
35 |
+
)
|
36 |
+
|
37 |
+
all_model_names = all_data['Model Name'].unique()
|
38 |
+
all_text_only_model_names = list(all_data[all_data['Model Type'] == 'Text Only']['Model Name'].unique())
|
39 |
+
print(all_text_only_model_names)
|
40 |
+
|
41 |
+
## Continue with the cold code --
|
42 |
+
# TODO: Update me to read from all_data for later
|
43 |
+
|
44 |
# Load the csv files into a dict with keys being name of the file and values being the data
|
45 |
data = {file: pd.read_pickle(file) for file in csv_results}
|
46 |
# Load the vision files into a dict
|
|
|
118 |
cot_vision_accuracy_df = finalize_df(cot_vision_accuracy_df)
|
119 |
|
120 |
|
121 |
+
|
122 |
+
|
123 |
def load_heatmap(evt: gr.SelectData):
|
124 |
heatmap_image = gr.Image(f"results/{evt.value}.jpg")
|
125 |
return heatmap_image
|
|
|
140 |
return heatmap_image
|
141 |
|
142 |
|
143 |
+
def calculate_order_by_first_substring(selected_models):
|
144 |
+
|
145 |
+
first_columns = all_data[all_data['substring_index'] == 1]
|
146 |
+
query_ids_df = first_columns[first_columns['Model Type'] == 'Text Only']
|
147 |
+
|
148 |
+
|
149 |
+
# Filter to include only the selected models
|
150 |
+
query_ids_df = query_ids_df[query_ids_df['Model Name'].isin(selected_models)]
|
151 |
+
|
152 |
+
print(len(query_ids_df))
|
153 |
+
|
154 |
+
query_ids_df = query_ids_df.groupby('query_id').filter(lambda x: x['parsed_judge_response'].eq(1).all())
|
155 |
+
|
156 |
+
print(len(query_ids_df))
|
157 |
+
|
158 |
+
query_ids = query_ids_df.query_id.unique()
|
159 |
+
# print('query_ids', len(query_ids))
|
160 |
+
|
161 |
+
# filter out fsm_ids and
|
162 |
+
fsm_ids = query_ids_df.fsm_id.unique()
|
163 |
+
print('fsm_ids', len(fsm_ids), "Total of 25 FSM is solvable by everything on the first substring")
|
164 |
+
|
165 |
+
|
166 |
+
# now filter all_data for query_ids and text only, then calcaulte the accuracy based on the parsed_judge_response for each model
|
167 |
+
|
168 |
+
text_only = all_data[all_data['Model Type'] == 'Text Only']
|
169 |
+
text_only_filtered = text_only[text_only['fsm_id'].isin(fsm_ids)]
|
170 |
+
# print # of query_ids from text_only_filtered
|
171 |
+
print(f"Number of query_ids from text_only_filtered: {len(text_only_filtered.query_id.unique())}")
|
172 |
+
|
173 |
+
text_only_filtered = text_only_filtered.groupby(['Model Name'])['parsed_judge_response'].mean().reset_index()
|
174 |
+
text_only_filtered['Accuracy'] = text_only_filtered['parsed_judge_response'] * 100
|
175 |
+
text_only_filtered.drop('parsed_judge_response', axis=1, inplace=True)
|
176 |
+
text_only_filtered.sort_values('Accuracy', ascending=False)
|
177 |
+
|
178 |
+
# round to two decimal places
|
179 |
+
text_only_filtered['Accuracy'] = text_only_filtered['Accuracy'].apply(lambda x: round(x, 2))
|
180 |
+
|
181 |
+
return text_only_filtered
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
with gr.Blocks() as demo:
|
186 |
gr.Markdown("# FSM Benchmark Leaderboard")
|
187 |
with gr.Tab("Text-only Benchmark"):
|
|
|
224 |
fn=load_cot_vision_heatmap, outputs=[cot_heatmap_image_vision]
|
225 |
)
|
226 |
|
227 |
+
with gr.Tab("Constraint Text-only Results"):
|
228 |
+
gr.Markdown("## Constraint Text-only Leaderboard by first substring")
|
229 |
+
included_models = gr.CheckboxGroup(
|
230 |
+
label="Models to include", choices=all_text_only_model_names, value=all_text_only_model_names
|
231 |
+
)
|
232 |
+
constrained_leader_board_text = gr.Dataframe()
|
233 |
+
|
234 |
+
|
235 |
+
included_models.input(fn=calculate_order_by_first_substring, inputs=[included_models], outputs=[constrained_leader_board_text])
|
236 |
+
|
237 |
demo.launch()
|