Fabrice-TIERCELIN commited on
Commit
0787fc3
·
verified ·
1 Parent(s): 3fa3761

Do update seed

Browse files
Files changed (1) hide show
  1. app.py +20 -15
app.py CHANGED
@@ -1,11 +1,12 @@
1
  from diffusers import StableDiffusionXLInpaintPipeline
 
 
2
  import gradio as gr
3
  import numpy as np
4
  import time
5
  import math
6
  import random
7
  import imageio
8
- from PIL import Image, ImageFilter
9
  import torch
10
 
11
  max_64_bit_int = 2**63 - 1
@@ -16,6 +17,16 @@ variant = "fp16" if torch.cuda.is_available() else None
16
  pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant)
17
  pipe = pipe.to(device)
18
 
 
 
 
 
 
 
 
 
 
 
19
  def noise_color(color, noise):
20
  return color + random.randint(- noise, noise)
21
 
@@ -136,7 +147,7 @@ def uncrop(
136
  seed = random.randint(0, max_64_bit_int)
137
 
138
  random.seed(seed)
139
- #pipe = pipe.manual_seed(seed)
140
 
141
  original_height, original_width, original_channel = np.array(input_image).shape
142
  output_width = enlarge_left + original_width + enlarge_right
@@ -253,17 +264,6 @@ def uncrop(
253
  mask_image
254
  ]
255
 
256
- def update_seed(is_randomize_seed, seed):
257
- if is_randomize_seed:
258
- return random.randint(0, max_64_bit_int)
259
- return seed
260
-
261
- def toggle_debug(is_debug_mode):
262
- if is_debug_mode:
263
- return [gr.update(visible = True)] * 3
264
- else:
265
- return [gr.update(visible = False)] * 3
266
-
267
  with gr.Blocks() as interface:
268
  gr.Markdown(
269
  """
@@ -322,7 +322,7 @@ with gr.Blocks() as interface:
322
  image_guidance_scale = gr.Slider(minimum = 1, value = 1.5, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
323
  strength = gr.Slider(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area (discouraged), higher=redraw from scratch")
324
  denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
325
- randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always random)", value = True, info = "If checked, result is always different")
326
  seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
327
  debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
328
 
@@ -340,7 +340,12 @@ with gr.Blocks() as interface:
340
  with gr.Row():
341
  mask_image = gr.Image(label = "Mask image", visible = False)
342
 
343
- submit.click(toggle_debug, debug_mode, [
 
 
 
 
 
344
  original_image,
345
  enlarged_image,
346
  mask_image
 
1
  from diffusers import StableDiffusionXLInpaintPipeline
2
+ from PIL import Image, ImageFilter
3
+
4
  import gradio as gr
5
  import numpy as np
6
  import time
7
  import math
8
  import random
9
  import imageio
 
10
  import torch
11
 
12
  max_64_bit_int = 2**63 - 1
 
17
  pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant)
18
  pipe = pipe.to(device)
19
 
20
+ def update_seed(is_randomize_seed, seed):
21
+ if is_randomize_seed:
22
+ return random.randint(0, max_64_bit_int)
23
+ return seed
24
+
25
+ def toggle_debug(is_debug_mode):
26
+ if is_debug_mode:
27
+ return [gr.update(visible = True)] * 3
28
+ return [gr.update(visible = False)] * 3
29
+
30
  def noise_color(color, noise):
31
  return color + random.randint(- noise, noise)
32
 
 
147
  seed = random.randint(0, max_64_bit_int)
148
 
149
  random.seed(seed)
150
+ torch.manual_seed(seed)
151
 
152
  original_height, original_width, original_channel = np.array(input_image).shape
153
  output_width = enlarge_left + original_width + enlarge_right
 
264
  mask_image
265
  ]
266
 
 
 
 
 
 
 
 
 
 
 
 
267
  with gr.Blocks() as interface:
268
  gr.Markdown(
269
  """
 
322
  image_guidance_scale = gr.Slider(minimum = 1, value = 1.5, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
323
  strength = gr.Slider(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area (discouraged), higher=redraw from scratch")
324
  denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
325
+ randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
326
  seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
327
  debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
328
 
 
340
  with gr.Row():
341
  mask_image = gr.Image(label = "Mask image", visible = False)
342
 
343
+ submit.click(fn = update_seed, inputs = [
344
+ randomize_seed,
345
+ seed
346
+ ], outputs = [
347
+ seed
348
+ ], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
349
  original_image,
350
  enlarged_image,
351
  mask_image