Fabrice-TIERCELIN commited on
Commit
56112c7
·
verified ·
1 Parent(s): 4ed6b2c

Dynamic interface + time

Browse files
Files changed (1) hide show
  1. app.py +83 -24
app.py CHANGED
@@ -91,7 +91,7 @@ def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left
91
 
92
  # Mask
93
  mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
94
- black_mask = Image.new(mode = input_image.mode, size = (original_width - 20, original_height - 20), color = (127, 127, 127, 0))
95
  mask_image.paste(black_mask, (enlarge_left + 10, enlarge_top + 10))
96
  mask_image = mask_image.filter(ImageFilter.BoxBlur(10))
97
 
@@ -126,26 +126,85 @@ def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left
126
  mask_image
127
  ]
128
 
129
- title = "Uncrop"
130
- description = "<p style='text-align: center;'>Enlarges the point of view of your image, up to 1 million pixels, freely, without account, without watermark, which can be downloaded</p><br/><br/>🚀 Powered by <i>SDXL 1.0</i> artificial intellingence<br/><ul><li>If you need to change the <b>view angle</b> of your image, I recommend you to use <i>Zero123</i>,</li><li>If you need to <b>upscale</b> your image, I recommend you to use <i>Ilaria Upscaler</i>,</li><li>If you need to <b>slightly change</b> your image, I recommend you to use <i>Image-to-Image SDXL</i>,</li><li>If you need to change <b>one detail</b> on your image, I recommend you to use <i>Inpaint SDXL</i>.</li></ul><br/>🐌 Slow process... ~20 min with 20 inference steps, ~6 hours with 25 inference steps.<br>You can duplicate this space on a free account, it works on CPU.<br/><a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a><br/><br/>⚖️ You can use, modify and share the generated images but not for commercial uses."
131
- gr.Interface(fn = predict, inputs = [
132
- gr.Image(label = "Your image", source = "upload", type = "numpy"),
133
- gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on top", info = "in pixels"),
134
- gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on right", info = "in pixels"),
135
- gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on bottom", info = "in pixels"),
136
- gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on left", info = "in pixels"),
137
- gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image'),
138
- gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark'),
139
- gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result"),
140
- gr.Slider(minimum = 10, maximum = 25, value = 10, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality"),
141
- gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt"),
142
- gr.Checkbox(label = "Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different"),
143
- gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)"),
144
- gr.Checkbox(label = "Debug mode", value = True, info = "Show intermediate results")
145
- ], outputs = [
146
- gr.Image(label = "Uncropped image"),
147
- gr.Label(label = "Information"),
148
- gr.Image(label = "Original image"),
149
- gr.Image(label = "Enlarged image"),
150
- gr.Image(label = "Mask image")
151
- ], title = title, description = description).launch(max_threads = True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  # Mask
93
  mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
94
+ black_mask = Image.new(mode = input_image.mode, size = (original_width - 20, original_height - 20), color = (0, 0, 0, 0))
95
  mask_image.paste(black_mask, (enlarge_left + 10, enlarge_top + 10))
96
  mask_image = mask_image.filter(ImageFilter.BoxBlur(10))
97
 
 
126
  mask_image
127
  ]
128
 
129
+ with gr.Blocks() as interface:
130
+ gr.Markdown(
131
+ """
132
+ <h1 style="text-align: center;">Uncrop</h1>
133
+ <p style="text-align: center;">Enlarges the point of view of your image, up to 1 million pixels, freely, without account, without watermark, which can be downloaded</p>
134
+ <br/>
135
+ <br/>
136
+ 🚀 Powered by <i>SDXL 1.0</i> artificial intellingence
137
+ <br/>
138
+ <ul>
139
+ <li>If you need to change the <b>view angle</b> of your image, I recommend you to use <i>Zero123</i>,</li>
140
+ <li>If you need to <b>upscale</b> your image, I recommend you to use <i>Ilaria Upscaler</i>,</li>
141
+ <li>If you need to <b>slightly change</b> your image, I recommend you to use <i>Image-to-Image SDXL</i>,</li>
142
+ <li>If you need to change <b>one detail</b> on your image, I recommend you to use <i>Inpaint SDXL</i>.</li>
143
+ </ul>
144
+ <br/>🐌 Slow process... ~20 min with 20 inference steps, ~6 hours with 25 inference steps.<br>You can duplicate this space on a free account, it works on CPU.<br/>
145
+ <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
146
+ <br/>
147
+ <br/>
148
+ ⚖️ You can use, modify and share the generated images but not for commercial uses.
149
+
150
+ """
151
+ )
152
+ with gr.Row():
153
+ with gr.Column():
154
+ with gr.Column():
155
+ enlarge_top = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on top", info = "in pixels")
156
+ with gr.Column():
157
+ with gr.Row():
158
+ with gr.Column():
159
+ enlarge_left = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on left", info = "in pixels")
160
+ with gr.Column():
161
+ source_img = gr.Image(label = "Your image", source = "upload", type = "numpy")
162
+ with gr.Column():
163
+ enlarge_right = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on right", info = "in pixels")
164
+ with gr.Row():
165
+ with gr.Column():
166
+ with gr.Column():
167
+ enlarge_bottom = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on bottom", info = "in pixels")
168
+ with gr.Column():
169
+ with gr.Row():
170
+ with gr.Row():
171
+ prompt = gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image')
172
+ with gr.Accordion("Advanced options", open = False):
173
+ negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark')
174
+ denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
175
+ num_inference_steps = gr.Slider(minimum = 10, maximum = 25, value = 10, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
176
+ guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
177
+ randomize_seed = gr.Checkbox(label = "Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
178
+ seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
179
+ debug_mode = gr.Checkbox(label = "Debug mode", value = True, info = "Show intermediate results")
180
+ with gr.Row():
181
+ submit = gr.Button("Uncrop", variant = "primary")
182
+ with gr.Row():
183
+ uncropped_image = gr.Image(label = "Uncropped image")
184
+ information = gr.Label(label = "Information")
185
+ original_image = gr.Image(label = "Original image")
186
+ enlarged_image = gr.Image(label = "Enlarged image")
187
+ mask_image = gr.Image(label = "Mask image")
188
+ submit.click(predict, inputs = [
189
+ source_img,
190
+ enlarge_top,
191
+ enlarge_right,
192
+ enlarge_bottom,
193
+ enlarge_left,
194
+ prompt,
195
+ negative_prompt,
196
+ denoising_steps,
197
+ num_inference_steps,
198
+ guidance_scale,
199
+ randomize_seed,
200
+ seed,
201
+ debug_mode
202
+ ], outputs = [
203
+ uncropped_image,
204
+ information,
205
+ original_image,
206
+ enlarged_image,
207
+ mask_image
208
+ ], scroll_to_output = True)
209
+
210
+ interface.queue().launch()