Spaces:
Runtime error
Runtime error
Fabrice-TIERCELIN
commited on
Commit
•
96e1ded
1
Parent(s):
d68eb2f
Smooth border
Browse files
app.py
CHANGED
@@ -19,30 +19,39 @@ pipe = pipe.to(device)
|
|
19 |
def noise_color(color, noise):
|
20 |
return color + random.randint(- noise, noise)
|
21 |
|
22 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
start = time.time()
|
24 |
progress(0, desc = "Preparing data...")
|
25 |
|
26 |
if source_img is None:
|
27 |
raise gr.Error("Please provide an image.")
|
28 |
|
29 |
-
if prompt is None or prompt == "":
|
30 |
-
raise gr.Error("Please provide a prompt input.")
|
31 |
-
|
32 |
-
if negative_prompt is None or negative_prompt == "":
|
33 |
-
raise gr.Error("Please provide a negative prompt input.")
|
34 |
-
|
35 |
if enlarge_top is None or enlarge_top == "":
|
36 |
-
|
37 |
|
38 |
if enlarge_right is None or enlarge_right == "":
|
39 |
-
|
40 |
|
41 |
if enlarge_bottom is None or enlarge_bottom == "":
|
42 |
-
|
43 |
|
44 |
if enlarge_left is None or enlarge_left == "":
|
45 |
-
|
46 |
|
47 |
if enlarge_top < 0 or enlarge_right < 0 or enlarge_bottom < 0 or enlarge_left < 0:
|
48 |
raise gr.Error("Please only provide positive margins.")
|
@@ -50,6 +59,15 @@ def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left
|
|
50 |
if enlarge_top == 0 and enlarge_right == 0 and enlarge_bottom == 0 and enlarge_left == 0:
|
51 |
raise gr.Error("At least one border must be enlarged.")
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
if randomize_seed:
|
54 |
seed = random.randint(0, max_64_bit_int)
|
55 |
|
@@ -110,9 +128,9 @@ def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left
|
|
110 |
|
111 |
# Mask
|
112 |
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
|
113 |
-
black_mask = Image.new(mode = input_image.mode, size = (original_width -
|
114 |
-
mask_image.paste(black_mask, (enlarge_left +
|
115 |
-
mask_image = mask_image.filter(ImageFilter.BoxBlur(
|
116 |
|
117 |
limitation = "";
|
118 |
|
@@ -200,6 +218,7 @@ with gr.Blocks() as interface:
|
|
200 |
with gr.Row():
|
201 |
with gr.Accordion("Advanced options", open = False):
|
202 |
negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark')
|
|
|
203 |
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
|
204 |
num_inference_steps = gr.Slider(minimum = 10, maximum = 25, value = 20, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
|
205 |
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
|
@@ -228,6 +247,7 @@ with gr.Blocks() as interface:
|
|
228 |
enlarge_left,
|
229 |
prompt,
|
230 |
negative_prompt,
|
|
|
231 |
denoising_steps,
|
232 |
num_inference_steps,
|
233 |
guidance_scale,
|
|
|
19 |
def noise_color(color, noise):
|
20 |
return color + random.randint(- noise, noise)
|
21 |
|
22 |
+
def predict(
|
23 |
+
source_img,
|
24 |
+
enlarge_top,
|
25 |
+
enlarge_right,
|
26 |
+
enlarge_bottom,
|
27 |
+
enlarge_left,
|
28 |
+
prompt,
|
29 |
+
negative_prompt,
|
30 |
+
smooth_border,
|
31 |
+
denoising_steps,
|
32 |
+
num_inference_steps,
|
33 |
+
guidance_scale,
|
34 |
+
randomize_seed,
|
35 |
+
seed,
|
36 |
+
debug_mode,
|
37 |
+
progress = gr.Progress()):
|
38 |
start = time.time()
|
39 |
progress(0, desc = "Preparing data...")
|
40 |
|
41 |
if source_img is None:
|
42 |
raise gr.Error("Please provide an image.")
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if enlarge_top is None or enlarge_top == "":
|
45 |
+
enlarge_top = 0
|
46 |
|
47 |
if enlarge_right is None or enlarge_right == "":
|
48 |
+
enlarge_right = 0
|
49 |
|
50 |
if enlarge_bottom is None or enlarge_bottom == "":
|
51 |
+
enlarge_bottom = 0
|
52 |
|
53 |
if enlarge_left is None or enlarge_left == "":
|
54 |
+
enlarge_left = 0
|
55 |
|
56 |
if enlarge_top < 0 or enlarge_right < 0 or enlarge_bottom < 0 or enlarge_left < 0:
|
57 |
raise gr.Error("Please only provide positive margins.")
|
|
|
59 |
if enlarge_top == 0 and enlarge_right == 0 and enlarge_bottom == 0 and enlarge_left == 0:
|
60 |
raise gr.Error("At least one border must be enlarged.")
|
61 |
|
62 |
+
if prompt is None or prompt == "":
|
63 |
+
raise gr.Error("Please provide a prompt input.")
|
64 |
+
|
65 |
+
if negative_prompt is None:
|
66 |
+
negative_prompt = ""
|
67 |
+
|
68 |
+
if smooth_border is None:
|
69 |
+
smooth_border = 20
|
70 |
+
|
71 |
if randomize_seed:
|
72 |
seed = random.randint(0, max_64_bit_int)
|
73 |
|
|
|
128 |
|
129 |
# Mask
|
130 |
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
|
131 |
+
black_mask = Image.new(mode = input_image.mode, size = (original_width - smooth_border, original_height - smooth_border), color = (127, 127, 127, 0))
|
132 |
+
mask_image.paste(black_mask, (enlarge_left + (smooth_border // 2), enlarge_top + (smooth_border // 2)))
|
133 |
+
mask_image = mask_image.filter(ImageFilter.BoxBlur((smooth_border // 2)))
|
134 |
|
135 |
limitation = "";
|
136 |
|
|
|
218 |
with gr.Row():
|
219 |
with gr.Accordion("Advanced options", open = False):
|
220 |
negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark')
|
221 |
+
smooth_border = gr.Slider(minimum = 0, maximum = 1024, value = 20, step = 2, label = "Smooth border", info = "lower=preserve original, higher=seamless")
|
222 |
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
|
223 |
num_inference_steps = gr.Slider(minimum = 10, maximum = 25, value = 20, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
|
224 |
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
|
|
|
247 |
enlarge_left,
|
248 |
prompt,
|
249 |
negative_prompt,
|
250 |
+
smooth_border,
|
251 |
denoising_steps,
|
252 |
num_inference_steps,
|
253 |
guidance_scale,
|