File size: 4,976 Bytes
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
## Training examples

Creating a training image set is [described in a different document](https://huggingface.co/docs/datasets/image_process#image-datasets).

### Installing the dependencies

Before running the scripts, make sure to install the library's training dependencies:

**Important**

To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```

Then cd in the example folder  and run
```bash
pip install -r requirements.txt
```


And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:

```bash
accelerate config
```

### Unconditional Flowers  

The command to train a DDPM UNet model on the Oxford Flowers dataset:

```bash
accelerate launch train_unconditional.py \
  --dataset_name="huggan/flowers-102-categories" \
  --resolution=64 --center_crop --random_flip \
  --output_dir="ddpm-ema-flowers-64" \
  --train_batch_size=16 \
  --num_epochs=100 \
  --gradient_accumulation_steps=1 \
  --use_ema \
  --learning_rate=1e-4 \
  --lr_warmup_steps=500 \
  --mixed_precision=no \
  --push_to_hub
```
An example trained model: https://huggingface.co/anton-l/ddpm-ema-flowers-64

A full training run takes 2 hours on 4xV100 GPUs.

<img src="https://user-images.githubusercontent.com/26864830/180248660-a0b143d0-b89a-42c5-8656-2ebf6ece7e52.png" width="700" />


### Unconditional Pokemon 

The command to train a DDPM UNet model on the Pokemon dataset:

```bash
accelerate launch train_unconditional.py \
  --dataset_name="huggan/pokemon" \
  --resolution=64 --center_crop --random_flip \
  --output_dir="ddpm-ema-pokemon-64" \
  --train_batch_size=16 \
  --num_epochs=100 \
  --gradient_accumulation_steps=1 \
  --use_ema \
  --learning_rate=1e-4 \
  --lr_warmup_steps=500 \
  --mixed_precision=no \
  --push_to_hub
```
An example trained model: https://huggingface.co/anton-l/ddpm-ema-pokemon-64

A full training run takes 2 hours on 4xV100 GPUs.

<img src="https://user-images.githubusercontent.com/26864830/180248200-928953b4-db38-48db-b0c6-8b740fe6786f.png" width="700" />


### Using your own data

To use your own dataset, there are 2 ways:
- you can either provide your own folder as `--train_data_dir`
- or you can upload your dataset to the hub (possibly as a private repo, if you prefer so), and simply pass the `--dataset_name` argument.

Below, we explain both in more detail.

#### Provide the dataset as a folder

If you provide your own folders with images, the script expects the following directory structure:

```bash
data_dir/xxx.png
data_dir/xxy.png
data_dir/[...]/xxz.png
```

In other words, the script will take care of gathering all images inside the folder. You can then run the script like this:

```bash
accelerate launch train_unconditional.py \
    --train_data_dir <path-to-train-directory> \
    <other-arguments>
```

Internally, the script will use the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature which will automatically turn the folders into 🤗 Dataset objects.

#### Upload your data to the hub, as a (possibly private) repo

It's very easy (and convenient) to upload your image dataset to the hub using the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature available in 🤗 Datasets. Simply do the following:

```python
from datasets import load_dataset

# example 1: local folder
dataset = load_dataset("imagefolder", data_dir="path_to_your_folder")

# example 2: local files (supported formats are tar, gzip, zip, xz, rar, zstd)
dataset = load_dataset("imagefolder", data_files="path_to_zip_file")

# example 3: remote files (supported formats are tar, gzip, zip, xz, rar, zstd)
dataset = load_dataset("imagefolder", data_files="https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip")

# example 4: providing several splits
dataset = load_dataset("imagefolder", data_files={"train": ["path/to/file1", "path/to/file2"], "test": ["path/to/file3", "path/to/file4"]})
```

`ImageFolder` will create an `image` column containing the PIL-encoded images.

Next, push it to the hub!

```python
# assuming you have ran the huggingface-cli login command in a terminal
dataset.push_to_hub("name_of_your_dataset")

# if you want to push to a private repo, simply pass private=True:
dataset.push_to_hub("name_of_your_dataset", private=True)
```

and that's it! You can now train your model by simply setting the `--dataset_name` argument to the name of your dataset on the hub.

More on this can also be found in [this blog post](https://huggingface.co/blog/image-search-datasets).