Spaces:
Runtime error
Runtime error
File size: 8,331 Bytes
f19da68 ffead1e f19da68 fc362b8 f19da68 4cae45e fc362b8 f66ab33 aff447f f9b54be f1dff10 fc362b8 9e15cd8 d2f25e6 7c193c2 9e15cd8 6f1239e fc362b8 4cae45e 559b00c 4cae45e 559b00c 4cae45e ffead1e 4cae45e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
import json
import torch
import time
import random
try:
# Only on HuggingFace
import spaces
is_space_imported = True
except ImportError:
is_space_imported = False
from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
# Old import
import numpy as np
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
from huggingface_hub import hf_hub_download
from gradio_imageslider import ImageSlider
from briarmbg import BriaRMBG
import PIL
from PIL import Image
from typing import Tuple
max_64_bit_int = 2**63 - 1
# Automatic device detection
if torch.cuda.is_available():
device_type = "cuda"
device_selection = "cuda:0"
else:
device_type = "cpu"
device_selection = "cpu"
class Tango:
def __init__(self, name = "declare-lab/tango2", device = device_selection):
path = snapshot_download(repo_id = name)
vae_config = json.load(open("{}/vae_config.json".format(path)))
stft_config = json.load(open("{}/stft_config.json".format(path)))
main_config = json.load(open("{}/main_config.json".format(path)))
self.vae = AutoencoderKL(**vae_config).to(device)
self.stft = TacotronSTFT(**stft_config).to(device)
# self.model = AudioDiffusion(**main_config).to(device)
#
# vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device)
# stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device)
# main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device)
#
# self.vae.load_state_dict(vae_weights)
# self.stft.load_state_dict(stft_weights)
# self.model.load_state_dict(main_weights)
#
# print ("Successfully loaded checkpoint from:", name)
#
# self.vae.eval()
# self.stft.eval()
# self.model.eval()
#
# self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
def chunks(self, lst, n):
# Yield successive n-sized chunks from a list
for i in range(0, len(lst), n):
yield lst[i:i + n]
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
# Generate audio for a single prompt string
with torch.no_grad():
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return wave
def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True):
# Generate audio for a list of prompt strings
outputs = []
for k in tqdm(range(0, len(prompts), batch_size)):
batch = prompts[k: k + batch_size]
with torch.no_grad():
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
outputs += [item for item in wave]
if samples == 1:
return outputs
return list(self.chunks(outputs, samples))
# Initialize TANGO
tango = Tango(device = "cpu")
#tango.vae.to(device_type)
#tango.stft.to(device_type)
#tango.model.to(device_type)
#def update_seed(is_randomize_seed, seed):
# if is_randomize_seed:
# return random.randint(0, max_64_bit_int)
# return seed
#
#def check(
# prompt,
# output_number,
# steps,
# guidance,
# is_randomize_seed,
# seed
#):
# if prompt is None or prompt == "":
# raise gr.Error("Please provide a prompt input.")
# if not output_number in [1, 2, 3]:
# raise gr.Error("Please ask for 1, 2 or 3 output files.")
#
#def update_output(output_format, output_number):
# return [
# gr.update(format = output_format),
# gr.update(format = output_format, visible = (2 <= output_number)),
# gr.update(format = output_format, visible = (output_number == 3)),
# gr.update(visible = False)
# ]
#
#def text2audio(
# prompt,
# output_number,
# steps,
# guidance,
# is_randomize_seed,
# seed
#):
# start = time.time()
#
# if seed is None:
# seed = random.randint(0, max_64_bit_int)
#
# random.seed(seed)
# torch.manual_seed(seed)
#
# output_wave = tango.generate(prompt, steps, guidance, output_number)
#
# output_wave_1 = gr.make_waveform((16000, output_wave[0]))
# output_wave_2 = gr.make_waveform((16000, output_wave[1])) if (2 <= output_number) else None
# output_wave_3 = gr.make_waveform((16000, output_wave[2])) if (output_number == 3) else None
#
# end = time.time()
# secondes = int(end - start)
# minutes = secondes // 60
# secondes = secondes - (minutes * 60)
# hours = minutes // 60
# minutes = minutes - (hours * 60)
# return [
# output_wave_1,
# output_wave_2,
# output_wave_3,
# gr.update(visible = True, value = "Start again to get a different result. The output have been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec.")
# ]
#
#if is_space_imported:
# text2audio = spaces.GPU(text2audio, duration = 420)
# Old code
net=BriaRMBG()
model_path = hf_hub_download("cocktailpeanut/gbmr", 'model.pth')
if torch.cuda.is_available():
net.load_state_dict(torch.load(model_path))
net=net.cuda()
device = "cuda"
elif torch.backends.mps.is_available():
net.load_state_dict(torch.load(model_path,map_location="mps"))
net=net.to("mps")
device = "mps"
else:
net.load_state_dict(torch.load(model_path,map_location="cpu"))
device = "cpu"
net.eval()
def resize_image(image):
image = image.convert('RGB')
model_input_size = (1024, 1024)
image = image.resize(model_input_size, Image.BILINEAR)
return image
def process(image):
# prepare input
orig_image = Image.fromarray(image)
w,h = orig_im_size = orig_image.size
image = resize_image(orig_image)
im_np = np.array(image)
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
im_tensor = torch.unsqueeze(im_tensor,0)
im_tensor = torch.divide(im_tensor,255.0)
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
if device == "cuda":
im_tensor=im_tensor.cuda()
elif device == "mps":
im_tensor=im_tensor.to("mps")
#inference
result=net(im_tensor)
# post process
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
ma = torch.max(result)
mi = torch.min(result)
result = (result-mi)/(ma-mi)
# image to pil
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
pil_im = Image.fromarray(np.squeeze(im_array))
# paste the mask on the original image
new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
new_im.paste(orig_image, mask=pil_im)
return new_im
gr.Markdown("## BRIA RMBG 1.4")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for BRIA RMBG 1.4 that using
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
</p>
''')
title = "Background Removal"
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
"""
examples = [['./input.jpg'],]
demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description)
if __name__ == "__main__":
demo.launch(share=False)
|