Spaces:
Runtime error
Runtime error
import gc | |
import unittest | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
DDPMScheduler, | |
PriorTransformer, | |
StableUnCLIPPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer | |
from diffusers.utils.testing_utils import load_numpy, require_torch_gpu, slow, torch_device | |
from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ...test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference | |
class StableUnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = StableUnCLIPPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false | |
test_xformers_attention = False | |
def get_dummy_components(self): | |
embedder_hidden_size = 32 | |
embedder_projection_dim = embedder_hidden_size | |
# prior components | |
torch.manual_seed(0) | |
prior_tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
torch.manual_seed(0) | |
prior_text_encoder = CLIPTextModelWithProjection( | |
CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=embedder_hidden_size, | |
projection_dim=embedder_projection_dim, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
) | |
torch.manual_seed(0) | |
prior = PriorTransformer( | |
num_attention_heads=2, | |
attention_head_dim=12, | |
embedding_dim=embedder_projection_dim, | |
num_layers=1, | |
) | |
torch.manual_seed(0) | |
prior_scheduler = DDPMScheduler( | |
variance_type="fixed_small_log", | |
prediction_type="sample", | |
num_train_timesteps=1000, | |
clip_sample=True, | |
clip_sample_range=5.0, | |
beta_schedule="squaredcos_cap_v2", | |
) | |
# regular denoising components | |
torch.manual_seed(0) | |
image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size) | |
image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2") | |
torch.manual_seed(0) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
torch.manual_seed(0) | |
text_encoder = CLIPTextModel( | |
CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=embedder_hidden_size, | |
projection_dim=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
) | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), | |
up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), | |
block_out_channels=(32, 64), | |
attention_head_dim=(2, 4), | |
class_embed_type="projection", | |
# The class embeddings are the noise augmented image embeddings. | |
# I.e. the image embeddings concated with the noised embeddings of the same dimension | |
projection_class_embeddings_input_dim=embedder_projection_dim * 2, | |
cross_attention_dim=embedder_hidden_size, | |
layers_per_block=1, | |
upcast_attention=True, | |
use_linear_projection=True, | |
) | |
torch.manual_seed(0) | |
scheduler = DDIMScheduler( | |
beta_schedule="scaled_linear", | |
beta_start=0.00085, | |
beta_end=0.012, | |
prediction_type="v_prediction", | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL() | |
components = { | |
# prior components | |
"prior_tokenizer": prior_tokenizer, | |
"prior_text_encoder": prior_text_encoder, | |
"prior": prior, | |
"prior_scheduler": prior_scheduler, | |
# image noising components | |
"image_normalizer": image_normalizer, | |
"image_noising_scheduler": image_noising_scheduler, | |
# regular denoising components | |
"tokenizer": tokenizer, | |
"text_encoder": text_encoder, | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"prior_num_inference_steps": 2, | |
"output_type": "numpy", | |
} | |
return inputs | |
# Overriding PipelineTesterMixin::test_attention_slicing_forward_pass | |
# because UnCLIP GPU undeterminism requires a looser check. | |
def test_attention_slicing_forward_pass(self): | |
test_max_difference = torch_device == "cpu" | |
self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference) | |
# Overriding PipelineTesterMixin::test_inference_batch_single_identical | |
# because UnCLIP undeterminism requires a looser check. | |
def test_inference_batch_single_identical(self): | |
test_max_difference = torch_device in ["cpu", "mps"] | |
self._test_inference_batch_single_identical(test_max_difference=test_max_difference) | |
class StableUnCLIPPipelineIntegrationTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_stable_unclip(self): | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" | |
) | |
pipe = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.float16) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
# stable unclip will oom when integration tests are run on a V100, | |
# so turn on memory savings | |
pipe.enable_attention_slicing() | |
pipe.enable_sequential_cpu_offload() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
output = pipe("anime turle", generator=generator, output_type="np") | |
image = output.images[0] | |
assert image.shape == (768, 768, 3) | |
assert_mean_pixel_difference(image, expected_image) | |
def test_stable_unclip_pipeline_with_sequential_cpu_offloading(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
pipe = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.float16) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
pipe.enable_sequential_cpu_offload() | |
_ = pipe( | |
"anime turtle", | |
prior_num_inference_steps=2, | |
num_inference_steps=2, | |
output_type="np", | |
) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
# make sure that less than 7 GB is allocated | |
assert mem_bytes < 7 * 10**9 | |