File size: 2,706 Bytes
a9b8948
8e6e3de
a9b8948
8e6e3de
a9b8948
8e6e3de
a9b8948
8e6e3de
 
 
 
 
 
 
 
 
 
a9b8948
e2ba8f3
a9b8948
8e6e3de
a9b8948
 
 
 
 
 
 
 
 
 
 
 
766b2ba
a9b8948
 
 
 
 
 
 
 
 
 
 
 
8e6e3de
a9b8948
 
 
 
 
 
 
 
8e6e3de
a9b8948
 
 
 
 
 
 
 
 
 
 
8e6e3de
a9b8948
8e6e3de
a9b8948
 
 
 
 
8e6e3de
a9b8948
8e6e3de
a9b8948
 
 
 
 
 
8e6e3de
a9b8948
 
8e6e3de
a9b8948
 
 
 
 
e692216
a9b8948
e692216
a9b8948
 
 
 
 
34a95c8
766b2ba
a9b8948
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import gradio as gr
from gradio_client import Client

client = Client("multimodalart/FLUX.1-merged")

def infer(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, api_name):
    
    result = client.predict(
		prompt=prompt,
		seed=seed,
		randomize_seed=True,
		width=width,
		height=height,
		guidance_scale=guidance_scale,
		num_inference_steps=num_inference_steps,
		api_name="/infer"
    )

    return result 

    
css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""


with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        FallnAI: DiffusionLab Beta 
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Create", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=999999,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=2048,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=2024,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=10.0,
                    step=0.1,
                    value=1.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=10,
                )
        

    run_button.click(
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.queue().launch()