File size: 15,482 Bytes
f73c2e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
'''
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py

'''
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
from basicsr.utils import get_root_logger
from basicsr.utils.registry import ARCH_REGISTRY

def normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
    

@torch.jit.script
def swish(x):
    return x*torch.sigmoid(x)


#  Define VQVAE classes
class VectorQuantizer(nn.Module):
    def __init__(self, codebook_size, emb_dim, beta):
        super(VectorQuantizer, self).__init__()
        self.codebook_size = codebook_size  # number of embeddings
        self.emb_dim = emb_dim  # dimension of embedding
        self.beta = beta  # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
        self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)

    def forward(self, z):
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
        z_flattened = z.view(-1, self.emb_dim)

        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
        d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
            2 * torch.matmul(z_flattened, self.embedding.weight.t())

        mean_distance = torch.mean(d)
        # find closest encodings
        # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
        min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
        # [0-1], higher score, higher confidence
        min_encoding_scores = torch.exp(-min_encoding_scores/10)

        min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
        min_encodings.scatter_(1, min_encoding_indices, 1)

        # get quantized latent vectors
        z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
        # compute loss for embedding
        loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
        # preserve gradients
        z_q = z + (z_q - z).detach()

        # perplexity
        e_mean = torch.mean(min_encodings, dim=0)
        perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q, loss, {
            "perplexity": perplexity,
            "min_encodings": min_encodings,
            "min_encoding_indices": min_encoding_indices,
            "min_encoding_scores": min_encoding_scores,
            "mean_distance": mean_distance
            }

    def get_codebook_feat(self, indices, shape):
        # input indices: batch*token_num -> (batch*token_num)*1
        # shape: batch, height, width, channel
        indices = indices.view(-1,1)
        min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
        min_encodings.scatter_(1, indices, 1)
        # get quantized latent vectors
        z_q = torch.matmul(min_encodings.float(), self.embedding.weight)

        if shape is not None:  # reshape back to match original input shape
            z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()

        return z_q


class GumbelQuantizer(nn.Module):
    def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
        super().__init__()
        self.codebook_size = codebook_size  # number of embeddings
        self.emb_dim = emb_dim  # dimension of embedding
        self.straight_through = straight_through
        self.temperature = temp_init
        self.kl_weight = kl_weight
        self.proj = nn.Conv2d(num_hiddens, codebook_size, 1)  # projects last encoder layer to quantized logits
        self.embed = nn.Embedding(codebook_size, emb_dim)

    def forward(self, z):
        hard = self.straight_through if self.training else True

        logits = self.proj(z)

        soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)

        z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)

        # + kl divergence to the prior loss
        qy = F.softmax(logits, dim=1)
        diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
        min_encoding_indices = soft_one_hot.argmax(dim=1)

        return z_q, diff, {
            "min_encoding_indices": min_encoding_indices
        }


class Downsample(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)

    def forward(self, x):
        pad = (0, 1, 0, 1)
        x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
        x = self.conv(x)
        return x


class Upsample(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
        x = F.interpolate(x, scale_factor=2.0, mode="nearest")
        x = self.conv(x)

        return x


class ResBlock(nn.Module):
    def __init__(self, in_channels, out_channels=None):
        super(ResBlock, self).__init__()
        self.in_channels = in_channels
        self.out_channels = in_channels if out_channels is None else out_channels
        self.norm1 = normalize(in_channels)
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.norm2 = normalize(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if self.in_channels != self.out_channels:
            self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x_in):
        x = x_in
        x = self.norm1(x)
        x = swish(x)
        x = self.conv1(x)
        x = self.norm2(x)
        x = swish(x)
        x = self.conv2(x)
        if self.in_channels != self.out_channels:
            x_in = self.conv_out(x_in)

        return x + x_in


class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = normalize(in_channels)
        self.q = torch.nn.Conv2d(
            in_channels,
            in_channels,
            kernel_size=1,
            stride=1,
            padding=0
        )
        self.k = torch.nn.Conv2d(
            in_channels,
            in_channels,
            kernel_size=1,
            stride=1,
            padding=0
        )
        self.v = torch.nn.Conv2d(
            in_channels,
            in_channels,
            kernel_size=1,
            stride=1,
            padding=0
        )
        self.proj_out = torch.nn.Conv2d(
            in_channels,
            in_channels,
            kernel_size=1,
            stride=1,
            padding=0
        )

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b, c, h, w = q.shape
        q = q.reshape(b, c, h*w)
        q = q.permute(0, 2, 1)   
        k = k.reshape(b, c, h*w)
        w_ = torch.bmm(q, k) 
        w_ = w_ * (int(c)**(-0.5))
        w_ = F.softmax(w_, dim=2)

        # attend to values
        v = v.reshape(b, c, h*w)
        w_ = w_.permute(0, 2, 1) 
        h_ = torch.bmm(v, w_)
        h_ = h_.reshape(b, c, h, w)

        h_ = self.proj_out(h_)

        return x+h_


class Encoder(nn.Module):
    def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions):
        super().__init__()
        self.nf = nf
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.attn_resolutions = attn_resolutions

        curr_res = self.resolution
        in_ch_mult = (1,)+tuple(ch_mult)

        blocks = []
        # initial convultion
        blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))

        # residual and downsampling blocks, with attention on smaller res (16x16)
        for i in range(self.num_resolutions):
            block_in_ch = nf * in_ch_mult[i]
            block_out_ch = nf * ch_mult[i]
            for _ in range(self.num_res_blocks):
                blocks.append(ResBlock(block_in_ch, block_out_ch))
                block_in_ch = block_out_ch
                if curr_res in attn_resolutions:
                    blocks.append(AttnBlock(block_in_ch))

            if i != self.num_resolutions - 1:
                blocks.append(Downsample(block_in_ch))
                curr_res = curr_res // 2

        # non-local attention block
        blocks.append(ResBlock(block_in_ch, block_in_ch))
        blocks.append(AttnBlock(block_in_ch))
        blocks.append(ResBlock(block_in_ch, block_in_ch))

        # normalise and convert to latent size
        blocks.append(normalize(block_in_ch))
        blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1))
        self.blocks = nn.ModuleList(blocks)

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
            
        return x


class Generator(nn.Module):
    def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
        super().__init__()
        self.nf = nf 
        self.ch_mult = ch_mult 
        self.num_resolutions = len(self.ch_mult)
        self.num_res_blocks = res_blocks
        self.resolution = img_size 
        self.attn_resolutions = attn_resolutions
        self.in_channels = emb_dim
        self.out_channels = 3
        block_in_ch = self.nf * self.ch_mult[-1]
        curr_res = self.resolution // 2 ** (self.num_resolutions-1)

        blocks = []
        # initial conv
        blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))

        # non-local attention block
        blocks.append(ResBlock(block_in_ch, block_in_ch))
        blocks.append(AttnBlock(block_in_ch))
        blocks.append(ResBlock(block_in_ch, block_in_ch))

        for i in reversed(range(self.num_resolutions)):
            block_out_ch = self.nf * self.ch_mult[i]

            for _ in range(self.num_res_blocks):
                blocks.append(ResBlock(block_in_ch, block_out_ch))
                block_in_ch = block_out_ch

                if curr_res in self.attn_resolutions:
                    blocks.append(AttnBlock(block_in_ch))

            if i != 0:
                blocks.append(Upsample(block_in_ch))
                curr_res = curr_res * 2

        blocks.append(normalize(block_in_ch))
        blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))

        self.blocks = nn.ModuleList(blocks)
   

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
            
        return x

  
@ARCH_REGISTRY.register()
class VQAutoEncoder(nn.Module):
    def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
                beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
        super().__init__()
        logger = get_root_logger()
        self.in_channels = 3 
        self.nf = nf 
        self.n_blocks = res_blocks 
        self.codebook_size = codebook_size
        self.embed_dim = emb_dim
        self.ch_mult = ch_mult
        self.resolution = img_size
        self.attn_resolutions = attn_resolutions
        self.quantizer_type = quantizer
        self.encoder = Encoder(
            self.in_channels,
            self.nf,
            self.embed_dim,
            self.ch_mult,
            self.n_blocks,
            self.resolution,
            self.attn_resolutions
        )
        if self.quantizer_type == "nearest":
            self.beta = beta #0.25
            self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
        elif self.quantizer_type == "gumbel":
            self.gumbel_num_hiddens = emb_dim
            self.straight_through = gumbel_straight_through
            self.kl_weight = gumbel_kl_weight
            self.quantize = GumbelQuantizer(
                self.codebook_size,
                self.embed_dim,
                self.gumbel_num_hiddens,
                self.straight_through,
                self.kl_weight
            )
        self.generator = Generator(
            self.nf, 
            self.embed_dim,
            self.ch_mult, 
            self.n_blocks, 
            self.resolution, 
            self.attn_resolutions
        )

        if model_path is not None:
            chkpt = torch.load(model_path, map_location='cpu')
            if 'params_ema' in chkpt:
                self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
                logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
            elif 'params' in chkpt:
                self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
                logger.info(f'vqgan is loaded from: {model_path} [params]')
            else:
                raise ValueError(f'Wrong params!')


    def forward(self, x):
        x = self.encoder(x)
        quant, codebook_loss, quant_stats = self.quantize(x)
        x = self.generator(quant)
        return x, codebook_loss, quant_stats



# patch based discriminator
@ARCH_REGISTRY.register()
class VQGANDiscriminator(nn.Module):
    def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
        super().__init__()

        layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)]
        ndf_mult = 1
        ndf_mult_prev = 1
        for n in range(1, n_layers):  # gradually increase the number of filters
            ndf_mult_prev = ndf_mult
            ndf_mult = min(2 ** n, 8)
            layers += [
                nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False),
                nn.BatchNorm2d(ndf * ndf_mult),
                nn.LeakyReLU(0.2, True)
            ]

        ndf_mult_prev = ndf_mult
        ndf_mult = min(2 ** n_layers, 8)

        layers += [
            nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(ndf * ndf_mult),
            nn.LeakyReLU(0.2, True)
        ]

        layers += [
            nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)]  # output 1 channel prediction map
        self.main = nn.Sequential(*layers)

        if model_path is not None:
            chkpt = torch.load(model_path, map_location='cpu')
            if 'params_d' in chkpt:
                self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d'])
            elif 'params' in chkpt:
                self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
            else:
                raise ValueError(f'Wrong params!')

    def forward(self, x):
        return self.main(x)