Spaces:
Runtime error
Runtime error
File size: 8,482 Bytes
e73380c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# Importar librer铆as necesarias
from unsloth import FastLanguageModel
import torch
from dotenv import load_dotenv
import os
import gc
# Cargar variables de entorno
load_dotenv()
token = os.getenv("HF_TOKEN")
# Configuraci贸n de par谩metros
max_seq_length = 2048
dtype = None # None para detecci贸n autom谩tica. Float16 para Tesla T4, V100, Bfloat16 para Ampere+
load_in_4bit = True # Utilizar cuantizaci贸n de 4 bits para reducir el uso de memoria
load_in_1bit = True # Utilizar cuantizaci贸n de 1 bit para una mayor optimizaci贸n de la memoria
optimize_storage = True # Optimizar el almacenamiento para minimizar el uso del disco
optimize_ram = True # Optimizar el uso de RAM descargando pesos no utilizados
optimize_model_space = True # Optimizar el espacio del modelo eliminando elementos inservibles
# Lista de modelos pre-cuantizados en 4bit y 1bit
quantized_models = [
"unsloth/mistral-7b-bnb-4bit",
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
"unsloth/llama-2-7b-bnb-4bit",
"unsloth/gemma-7b-bnb-4bit",
"unsloth/gemma-7b-it-bnb-4bit",
"unsloth/gemma-2b-bnb-4bit",
"unsloth/gemma-2b-it-bnb-4bit",
"unsloth/gemma-7b-bnb-1bit", # Modelo cuantizado en 1 bit
"unsloth/gemma-2b-bnb-1bit", # Modelo cuantizado en 1 bit
]
# Cargar el modelo y el tokenizador
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="unsloth/gemma-7b-bnb-1bit",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
load_in_1bit=load_in_1bit,
optimize_storage=optimize_storage,
optimize_ram=optimize_ram,
optimize_model_space=optimize_model_space, # Activar optimizaci贸n de espacio del modelo
token=token,
)
# Agregar adaptadores LoRA
model = FastLanguageModel.get_peft_model(
model,
r=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"],
lora_alpha=16,
lora_dropout=0,
bias="none",
use_gradient_checkpointing="unsloth",
random_state=3407,
use_rslora=False,
loftq_config=None,
optimize_1bit=True, # Habilitar optimizaci贸n de 1 bit
)
# Optimizaci贸n de almacenamiento, RAM y espacio del modelo
if optimize_storage or optimize_ram or optimize_model_space:
torch.cuda.empty_cache()
gc.collect()
# Eliminar componentes inservibles del modelo para optimizar el espacio
def prune_model(model):
layers_to_keep = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
for name, module in model.named_modules():
if name not in layers_to_keep:
delattr(model, name)
return model
if optimize_model_space:
model = prune_model(model)
if optimize_storage:
model.save_pretrained("optimized_model", max_shard_size="100MB")
if optimize_ram:
model.to_disk("optimized_model", device_map="cpu")
# Preparaci贸n de datos
from datasets import load_dataset
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
EOS_TOKEN = tokenizer.eos_token
def formatting_prompts_func(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return {"text": texts}
dataset = load_dataset("yahma/alpaca-cleaned", split="train")
dataset = dataset.map(formatting_prompts_func, batched=True)
# Entrenamiento del modelo
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=max_seq_length,
dataset_num_proc=20,
packing=False,
args=TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
warmup_steps=5,
max_steps=60,
learning_rate=8e-4,
fp16=not is_bfloat16_supported(),
bf16=is_bfloat16_supported(),
logging_steps=1,
optim="adamw_8bit",
weight_decay=0.01,
lr_scheduler_type="linear",
seed=3407,
output_dir="outputs",
),
)
# Mostrar estad铆sticas de memoria actuales
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
# Entrenar el modelo
trainer_stats = trainer.train()
# Mostrar estad铆sticas finales de memoria y tiempo
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory / max_memory * 100, 3)
lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(f"{round(trainer_stats.metrics['train_runtime'] / 60, 2)} minutes used for training.")
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
# Inferencia
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue the fibonacci sequence.",
"1, 1, 2, 3, 5, 8",
"",
)
], return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
print(tokenizer.batch_decode(outputs))
# Inferencia continua usando TextStreamer
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue the fibonacci sequence.",
"1, 1, 2, 3, 5, 8",
"",
)
], return_tensors="pt").to("cuda")
_ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=128)
# Guardar y cargar modelos fine-tuned
model.save_pretrained("lora_model")
tokenizer.save_pretrained("lora_model")
if True:
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="lora_model",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
load_in_1bit=load_in_1bit,
optimize_storage=optimize_storage,
optimize_ram=optimize_ram,
optimize_model_space=optimize_model_space, # Activar optimizaci贸n de espacio del modelo
)
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
alpaca_prompt.format(
"What is a famous tall tower in Paris?",
"",
"",
)
], return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
print(tokenizer.batch_decode(outputs))
# Guardar en float16 para VLLM
if True: model.save_pretrained_merged("model", tokenizer, save_method="merged_16bit",)
if True: model.push_to_hub_merged("Yjhhh/model", tokenizer, save_method="merged_16bit", token=token)
# Guardar en formato GGUF
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method="q4_0")
if True: model.push_to_hub_gguf("Yjhhh/model", tokenizer, quantization_method="q4_0", token=token)
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method="q4_1")
if True: model.push_to_hub_gguf("Yjhhh/model", tokenizer, quantization_method="q4_1", token=token)
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method="q8")
if True: model.push_to_hub_gguf("Yjhhh/model", tokenizer, quantization_method="q8", token=token)
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method="q8_0")
if True: model.push_to_hub_gguf("Yjhhh/model", tokenizer, quantization_method="q8_0", token=token)
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method="q8_1")
if True: model.push_to_hub_gguf("Yjhhh/model", tokenizer, quantization_method="q8_1", token=token)
|