Spaces:
Build error
Build error
File size: 10,403 Bytes
37a01aa 2b3f1b9 37a01aa 2b3f1b9 37a01aa 0885f1c 37a01aa 0885f1c 37a01aa 0885f1c 2b3f1b9 0885f1c 37a01aa 2b3f1b9 37a01aa 0885f1c 37a01aa 0885f1c 37a01aa 0885f1c 37a01aa 0885f1c 37a01aa 2b3f1b9 37a01aa 2b3f1b9 37a01aa 2b3f1b9 37a01aa 2b3f1b9 37a01aa 2b3f1b9 37a01aa 0885f1c 37a01aa 0885f1c 37a01aa 0885f1c 37a01aa 0885f1c 37a01aa 0885f1c 37a01aa 2b3f1b9 37a01aa 0885f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from torch.optim import AdamW
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import time
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
from diffusers import DiffusionPipeline
from huggingface_hub import login, HfApi, Repository
from dotenv import load_dotenv
import gradio as gr
# Cargar variables de entorno
load_dotenv()
class UnifiedModel(nn.Module):
def __init__(self, models):
super(UnifiedModel, self).__init__()
self.models = nn.ModuleList(models)
self.classifier = nn.Linear(sum([model.config.hidden_size for model in models if hasattr(model, 'config')]), 2)
def forward(self, inputs):
hidden_states = []
for model in self.models:
if isinstance(model, nn.Module):
outputs = model(**inputs)
hidden_states.append(outputs.last_hidden_state[:, 0, :])
elif isinstance(model, DiffusionPipeline):
outputs = model(**inputs)
hidden_states.append(torch.tensor(outputs).float())
concatenated_hidden_states = torch.cat(hidden_states, dim=-1)
logits = self.classifier(concatenated_hidden_states)
return logits
class SyntheticDataset(Dataset):
def __init__(self, tokenizers, size=100):
self.tokenizers = tokenizers
self.size = size
self.data = self._generate_data()
def _generate_data(self):
data = []
for _ in range(self.size):
text = "This is a sample sentence for testing purposes."
label = torch.tensor(0) # Sample label
item = {"text": text, "label": label}
for name, tokenizer in self.tokenizers.items():
tokenized = tokenizer(text, padding="max_length", truncation=True, max_length=128)
item[f"input_ids_{name}"] = torch.tensor(tokenized["input_ids"])
item[f"attention_mask_{name}"] = torch.tensor(tokenized["attention_mask"])
data.append(item)
return data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def push_to_hub(local_dir, repo_name):
try:
repo_url = HfApi().create_repo(repo_name, exist_ok=True)
repo = Repository(local_dir, clone_from=repo_url)
if not os.path.exists(os.path.join(local_dir, ".git")):
os.system(f"cd {local_dir} && git init && git remote add origin {repo_url} && git pull origin main")
repo.git_add(auto_lfs_track=True)
repo.git_commit("Add model and tokenizer files")
json_files = ["config.json", "generation_config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer.model", "tokenizer_config.json"]
for json_file in json_files:
json_file_path = os.path.join(local_dir, json_file)
if os.path.exists(json_file_path):
repo.git_add(json_file_path)
repo.git_push()
print(f"Pushed model and tokenizer to {repo_url}")
except Exception as e:
print(f"Error pushing to Hugging Face Hub: {e}")
def load_model(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
def train(model, train_loader, eval_loader, args):
model.train()
epoch = 0
total_steps = len(train_loader)
for step, batch in enumerate(train_loader):
start_time = time.time()
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in tokenizers.keys()]
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in tokenizers.keys()]
labels = batch["label"].to("cpu")
optimizer.zero_grad()
outputs = model(input_ids)
loss = nn.CrossEntropyLoss()(outputs, labels)
loss.backward()
optimizer.step()
elapsed_time = time.time() - start_time
estimated_total_time = total_steps * (elapsed_time / (step + 1))
estimated_remaining_time = estimated_total_time - elapsed_time
if step % args.logging_steps == 0:
train_losses.append(loss.item())
print(f"Step {step}/{total_steps}, Loss: {loss.item()}, Estimated remaining time: {estimated_remaining_time:.2f} seconds")
epoch += 1
model.eval()
eval_loss = 0
with torch.no_grad():
for batch in eval_loader:
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in tokenizers.keys()]
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in tokenizers.keys()]
labels = batch["label"].to("cpu")
outputs = model(input_ids)
loss = nn.CrossEntropyLoss()(outputs, labels)
eval_loss += loss.item()
eval_loss /= len(eval_loader)
eval_losses.append(eval_loss)
print(f"Epoch {epoch}/{args.num_train_epochs}, Evaluation Loss: {eval_loss}")
def gradio_interface(input_text):
# Define the Gradio interface function
tokenized_inputs = {name: tokenizer.encode(input_text, return_tensors="pt") for name, tokenizer in tokenizers.items()}
model_output = unified_model(tokenized_inputs)
return model_output
def main():
while True:
try:
os.system("git config --global credential.helper store")
login(token=os.getenv("HUGGINGFACE_TOKEN"), add_to_git_credential=True)
# Definir los modelos que se van a utilizar
models_to_train = [
"openai-community/gpt2-xl",
"google/gemma-2-9b-it",
"google/gemma-2-9b",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-8B",
"openbmb/MiniCPM-V-2_6",
"bigcode/starcoder",
"WizardLMTeam/WizardCoder-Python-34B-V1.0",
"Qwen/Qwen2-72B-Instruct",
"google/gemma-2-2b-it",
"facebook/bart-large-cnn",
"Falconsai/text_summarization",
"microsoft/speecht5_tts",
"Groq/Llama-3-Groq-70B-Tool-Use",
"Groq/Llama-3-Groq-8B-Tool-Use",
"facebook/musicgen-large",
"facebook/musicgen-melody",
"black-forest-labs/FLUX.1-schnell",
"facebook/musicgen-small",
"stabilityai/stable-video-diffusion-img2vid-xt-1-1",
"openai/whisper-small",
"black-forest-labs/FLUX.1-dev",
"stabilityai/stable-diffusion-2-1"
]
# Inicializar los modelos y tokenizadores
tokenizers = {}
models = []
for model_name in models_to_train:
tokenizer, model = load_model(model_name)
tokenizers[model_name] = tokenizer
models.append(model)
# Crear un dataset sint茅tico para entrenamiento y evaluaci贸n
synthetic_dataset = SyntheticDataset(tokenizers, size=100)
# Dividir el dataset en entrenamiento y evaluaci贸n
train_size = int(0.8 * len(synthetic_dataset))
val_size = len(synthetic_dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(synthetic_dataset, [train_size, val_size])
# Crear DataLoaders para entrenamiento y evaluaci贸n
train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)
eval_loader = DataLoader(val_dataset, batch_size=16)
# Unificar los modelos en uno solo
unified_model = UnifiedModel(models)
unified_model.to(torch.device("cpu"))
# Mostrar la cantidad de par谩metros totales a entrenar
total_params = sum(p.numel() for p in unified_model.parameters())
print(f"Total parameters to train: {total_params}")
# Definir los argumentos de entrenamiento
training_args = TrainingArguments(
per_device_train_batch_size=2,
per_device_eval_batch_size=16,
num_train_epochs=1,
logging_steps=10,
save_steps=10,
evaluation_strategy="steps"
)
# Definir el optimizador
optimizer = AdamW(unified_model.parameters(), lr=5e-5)
# Listas para almacenar las p茅rdidas
train_losses = []
eval_losses = []
# Entrenar el modelo
train(unified_model, train_loader, eval_loader, training_args)
# Visualizar p茅rdidas
fig, ax = plt.subplots()
ax.set_xlabel("Epochs")
ax.set_ylabel("Loss")
ax.plot(train_losses, label="Training Loss")
ax.plot(eval_losses, label="Evaluation Loss")
ax.legend()
def animate(i):
ax.clear()
ax.plot(train_losses, label="Training Loss")
ax.plot(eval_losses, label="Evaluation Loss")
ax.set_xlabel("Epochs")
ax.set_ylabel("Loss")
ax.legend()
ani = animation.FuncAnimation(fig, animate, interval=1000)
plt.show()
# Guardar el modelo y el tokenizador unificados
if not os.path.exists("./outputs/unified_model"):
os.makedirs("./outputs/unified_model")
# Guardar el modelo unificado en un directorio local
local_dir = "./outputs/unified_model"
torch.save(unified_model.state_dict(), os.path.join(local_dir, "pytorch_model.bin"))
# Guardar el tokenizador en un directorio local
for name, tokenizer in tokenizers.items():
tokenizer.save_pretrained(local_dir)
# Subir el modelo y el tokenizador a Hugging Face
push_to_hub(local_dir, repo_name="Ffftdtd5dtft/my_model")
# Configurar y lanzar la interfaz Gradio
interface = gr.Interface(fn=gradio_interface, inputs="text", outputs="text")
interface.launch()
break
except Exception as e:
print(f"Error: {e}")
time.sleep(2)
if __name__ == "__main__":
main()
|