Spaces:
Runtime error
Runtime error
File size: 16,182 Bytes
cf40b67 835fc41 cf40b67 835fc41 7625ecd 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 8a9a6c3 835fc41 8a9a6c3 835fc41 8a9a6c3 835fc41 8a9a6c3 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 8d748c9 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 8a9a6c3 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 835fc41 cf40b67 8366798 cf40b67 835fc41 cf40b67 835fc41 cf40b67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import os
import subprocess
import numpy as np
# Install required dependencies for Kokoro with better error handling
try:
subprocess.run(['git', 'lfs', 'install'], check=True)
if not os.path.exists('Kokoro-82M'):
subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True)
# Try installing espeak with proper package manager commands
try:
# Update package list first
subprocess.run(['apt-get', 'update'], check=True)
# Try installing espeak first (more widely available)
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
except subprocess.CalledProcessError:
print("Warning: Could not install espeak. Attempting espeak-ng...")
try:
subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True)
except subprocess.CalledProcessError:
print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")
except Exception as e:
print(f"Warning: Initial setup error: {str(e)}")
print("Continuing with limited functionality...")
# Initialize models and tokenizers
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# Move model initialization inside a function to prevent CUDA initialization in main process
def init_models():
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
offload_folder="offload",
low_cpu_mem_usage=True,
torch_dtype=torch.float16
)
return model
# Initialize Kokoro TTS with better error handling
try:
import sys
sys.path.append('Kokoro-82M')
from models import build_model
from kokoro import generate
# Don't initialize models/voices in main process for ZeroGPU compatibility
VOICE_CHOICES = {
'πΊπΈ Female (Default)': 'af',
'πΊπΈ Bella': 'af_bella',
'πΊπΈ Sarah': 'af_sarah',
'πΊπΈ Nicole': 'af_nicole'
}
TTS_ENABLED = True
except Exception as e:
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
TTS_ENABLED = False
def get_web_results(query, max_results=5): # Increased to 5 for better context
"""Get web search results using DuckDuckGo"""
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
return [{
"title": result.get("title", ""),
"snippet": result["body"],
"url": result["href"],
"date": result.get("published", "")
} for result in results]
except Exception as e:
return []
def format_prompt(query, context):
"""Format the prompt with web context"""
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
return f"""You are an intelligent search assistant. Answer the user's query using the provided web context.
Current Time: {current_time}
Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context.
Query: {query}
Web Context:
{context_lines}
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc. If the query is about elections, clearly specify which year and type of election you're discussing.
Answer:"""
def format_sources(web_results):
"""Format sources with more details"""
if not web_results:
return "<div class='no-sources'>No sources available</div>"
sources_html = "<div class='sources-container'>"
for i, res in enumerate(web_results, 1):
title = res["title"] or "Source"
date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else ""
sources_html += f"""
<div class='source-item'>
<div class='source-number'>[{i}]</div>
<div class='source-content'>
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
{date}
<div class='source-snippet'>{res['snippet'][:150]}...</div>
</div>
</div>
"""
sources_html += "</div>"
return sources_html
# Wrap the answer generation with spaces.GPU decorator
@spaces.GPU(duration=30)
def generate_answer(prompt):
"""Generate answer using the DeepSeek model"""
# Initialize model inside the GPU-decorated function
model = init_models()
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
return_attention_mask=True
).to(model.device)
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=256,
temperature=0.7,
top_p=0.95,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
early_stopping=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Similarly wrap TTS generation with spaces.GPU
@spaces.GPU(duration=60)
def generate_speech_with_gpu(text, voice_name='af'):
"""Generate speech from text using Kokoro TTS model with GPU handling"""
try:
# Initialize TTS model and voice inside GPU function
device = 'cuda'
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
VOICEPACK = torch.load(f'Kokoro-82M/voices/{voice_name}.pt', weights_only=True).to(device)
# Clean the text
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
# Split long text into chunks
max_chars = 1000
chunks = []
if len(clean_text) > max_chars:
sentences = clean_text.split('.')
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) < max_chars:
current_chunk += sentence + "."
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = sentence + "."
if current_chunk:
chunks.append(current_chunk)
else:
chunks = [clean_text]
# Generate audio for each chunk
audio_chunks = []
for chunk in chunks:
if chunk.strip(): # Only process non-empty chunks
chunk_audio, _ = generate(TTS_MODEL, chunk.strip(), VOICEPACK, lang='a')
if isinstance(chunk_audio, torch.Tensor):
chunk_audio = chunk_audio.cpu().numpy()
audio_chunks.append(chunk_audio)
# Concatenate chunks if we have any
if audio_chunks:
if len(audio_chunks) > 1:
final_audio = np.concatenate(audio_chunks)
else:
final_audio = audio_chunks[0]
return (24000, final_audio)
return None
except Exception as e:
print(f"Error generating speech: {str(e)}")
import traceback
traceback.print_exc()
return None
def process_query(query, history, selected_voice='af'):
"""Process user query with streaming effect"""
try:
if history is None:
history = []
# Get web results first
web_results = get_web_results(query)
sources_html = format_sources(web_results)
current_history = history + [[query, "*Searching...*"]]
yield {
answer_output: gr.Markdown("*Searching & Thinking...*"),
sources_output: gr.HTML(sources_html),
search_btn: gr.Button("Searching...", interactive=False),
chat_history_display: current_history,
audio_output: None
}
# Generate answer
prompt = format_prompt(query, web_results)
answer = generate_answer(prompt)
final_answer = answer.split("Answer:")[-1].strip()
# Generate speech from the answer
if TTS_ENABLED:
try:
yield {
answer_output: gr.Markdown(final_answer),
sources_output: gr.HTML(sources_html),
search_btn: gr.Button("Generating audio...", interactive=False),
chat_history_display: history + [[query, final_answer]],
audio_output: None
}
audio = generate_speech_with_gpu(final_answer, selected_voice)
if audio is None:
print("Failed to generate audio")
except Exception as e:
print(f"Error in speech generation: {str(e)}")
audio = None
else:
audio = None
updated_history = history + [[query, final_answer]]
yield {
answer_output: gr.Markdown(final_answer),
sources_output: gr.HTML(sources_html),
search_btn: gr.Button("Search", interactive=True),
chat_history_display: updated_history,
audio_output: audio if audio is not None else gr.Audio(value=None)
}
except Exception as e:
error_message = str(e)
if "GPU quota" in error_message:
error_message = "β οΈ GPU quota exceeded. Please try again later when the daily quota resets."
yield {
answer_output: gr.Markdown(f"Error: {error_message}"),
sources_output: gr.HTML(sources_html),
search_btn: gr.Button("Search", interactive=True),
chat_history_display: history + [[query, f"*Error: {error_message}*"]],
audio_output: None
}
# Update the CSS for better contrast and readability
css = """
.gradio-container {
max-width: 1200px !important;
background-color: #f7f7f8 !important;
}
#header {
text-align: center;
margin-bottom: 2rem;
padding: 2rem 0;
background: #1a1b1e;
border-radius: 12px;
color: white;
}
#header h1 {
color: white;
font-size: 2.5rem;
margin-bottom: 0.5rem;
}
#header h3 {
color: #a8a9ab;
}
.search-container {
background: #1a1b1e;
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
padding: 1rem;
margin-bottom: 1rem;
}
.search-box {
padding: 1rem;
background: #2c2d30;
border-radius: 8px;
margin-bottom: 1rem;
}
/* Style the input textbox */
.search-box input[type="text"] {
background: #3a3b3e !important;
border: 1px solid #4a4b4e !important;
color: white !important;
border-radius: 8px !important;
}
.search-box input[type="text"]::placeholder {
color: #a8a9ab !important;
}
/* Style the search button */
.search-box button {
background: #2563eb !important;
border: none !important;
}
/* Results area styling */
.results-container {
background: #2c2d30;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
}
.answer-box {
background: #3a3b3e;
border-radius: 8px;
padding: 1.5rem;
color: white;
margin-bottom: 1rem;
}
.answer-box p {
color: #e5e7eb;
line-height: 1.6;
}
.sources-container {
margin-top: 1rem;
background: #2c2d30;
border-radius: 8px;
padding: 1rem;
}
.source-item {
display: flex;
padding: 12px;
margin: 8px 0;
background: #3a3b3e;
border-radius: 8px;
transition: all 0.2s;
}
.source-item:hover {
background: #4a4b4e;
}
.source-number {
font-weight: bold;
margin-right: 12px;
color: #60a5fa;
}
.source-content {
flex: 1;
}
.source-title {
color: #60a5fa;
font-weight: 500;
text-decoration: none;
display: block;
margin-bottom: 4px;
}
.source-date {
color: #a8a9ab;
font-size: 0.9em;
margin-left: 8px;
}
.source-snippet {
color: #e5e7eb;
font-size: 0.9em;
line-height: 1.4;
}
.chat-history {
max-height: 400px;
overflow-y: auto;
padding: 1rem;
background: #2c2d30;
border-radius: 8px;
margin-top: 1rem;
}
.examples-container {
background: #2c2d30;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
}
.examples-container button {
background: #3a3b3e !important;
border: 1px solid #4a4b4e !important;
color: #e5e7eb !important;
}
/* Markdown content styling */
.markdown-content {
color: #e5e7eb !important;
}
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
color: white !important;
}
.markdown-content a {
color: #60a5fa !important;
}
/* Accordion styling */
.accordion {
background: #2c2d30 !important;
border-radius: 8px !important;
margin-top: 1rem !important;
}
.voice-selector {
margin-top: 1rem;
background: #2c2d30;
border-radius: 8px;
padding: 0.5rem;
}
.voice-selector select {
background: #3a3b3e !important;
color: white !important;
border: 1px solid #4a4b4e !important;
}
"""
# Update the Gradio interface layout
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
chat_history = gr.State([])
with gr.Column(elem_id="header"):
gr.Markdown("# π AI Search Assistant")
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
with gr.Column(elem_classes="search-container"):
with gr.Row(elem_classes="search-box"):
search_input = gr.Textbox(
label="",
placeholder="Ask anything...",
scale=5,
container=False
)
search_btn = gr.Button("Search", variant="primary", scale=1)
voice_select = gr.Dropdown(
choices=list(VOICE_CHOICES.items()),
value='af',
label="Select Voice",
elem_classes="voice-selector"
)
with gr.Row(elem_classes="results-container"):
with gr.Column(scale=2):
with gr.Column(elem_classes="answer-box"):
answer_output = gr.Markdown(elem_classes="markdown-content")
with gr.Row():
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player")
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
chat_history_display = gr.Chatbot(elem_classes="chat-history")
with gr.Column(scale=1):
with gr.Column(elem_classes="sources-box"):
gr.Markdown("### Sources")
sources_output = gr.HTML()
with gr.Row(elem_classes="examples-container"):
gr.Examples(
examples=[
"musk explores blockchain for doge",
"nvidia to launch new gaming card",
"What are the best practices for sustainable living?",
"How is climate change affecting ocean ecosystems?"
],
inputs=search_input,
label="Try these examples"
)
# Handle interactions
search_btn.click(
fn=process_query,
inputs=[search_input, chat_history, voice_select],
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
)
# Also trigger search on Enter key
search_input.submit(
fn=process_query,
inputs=[search_input, chat_history, voice_select],
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
)
if __name__ == "__main__":
demo.launch(share=True) |