File size: 16,182 Bytes
cf40b67
835fc41
cf40b67
 
 
 
 
835fc41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7625ecd
835fc41
cf40b67
 
835fc41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf40b67
 
 
 
 
 
835fc41
cf40b67
 
 
 
 
 
 
835fc41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf40b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835fc41
 
cf40b67
835fc41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9a6c3
835fc41
 
 
 
8a9a6c3
835fc41
 
 
8a9a6c3
835fc41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9a6c3
 
835fc41
 
 
 
cf40b67
835fc41
 
cf40b67
 
 
835fc41
cf40b67
 
 
 
835fc41
cf40b67
8d748c9
cf40b67
835fc41
 
 
cf40b67
 
835fc41
cf40b67
 
835fc41
cf40b67
835fc41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf40b67
835fc41
cf40b67
 
835fc41
 
cf40b67
8a9a6c3
835fc41
 
 
 
cf40b67
835fc41
 
cf40b67
835fc41
 
cf40b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835fc41
 
 
 
 
 
 
 
 
 
 
 
 
cf40b67
 
 
 
 
 
 
 
835fc41
cf40b67
 
 
 
 
 
 
 
 
 
835fc41
 
 
 
 
 
cf40b67
 
 
 
 
835fc41
 
cf40b67
 
 
 
 
 
 
 
 
 
8366798
 
cf40b67
 
 
 
 
 
 
 
 
 
835fc41
 
cf40b67
 
 
 
 
835fc41
 
cf40b67
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import os
import subprocess
import numpy as np

# Install required dependencies for Kokoro with better error handling
try:
    subprocess.run(['git', 'lfs', 'install'], check=True)
    if not os.path.exists('Kokoro-82M'):
        subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True)
    
    # Try installing espeak with proper package manager commands
    try:
        # Update package list first
        subprocess.run(['apt-get', 'update'], check=True)
        # Try installing espeak first (more widely available)
        subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
    except subprocess.CalledProcessError:
        print("Warning: Could not install espeak. Attempting espeak-ng...")
        try:
            subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True)
        except subprocess.CalledProcessError:
            print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")

except Exception as e:
    print(f"Warning: Initial setup error: {str(e)}")
    print("Continuing with limited functionality...")

# Initialize models and tokenizers
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token

# Move model initialization inside a function to prevent CUDA initialization in main process
def init_models():
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        device_map="auto",
        offload_folder="offload",
        low_cpu_mem_usage=True,
        torch_dtype=torch.float16
    )
    return model

# Initialize Kokoro TTS with better error handling
try:
    import sys
    sys.path.append('Kokoro-82M')
    from models import build_model
    from kokoro import generate

    # Don't initialize models/voices in main process for ZeroGPU compatibility
    VOICE_CHOICES = {
        'πŸ‡ΊπŸ‡Έ Female (Default)': 'af',
        'πŸ‡ΊπŸ‡Έ Bella': 'af_bella', 
        'πŸ‡ΊπŸ‡Έ Sarah': 'af_sarah',
        'πŸ‡ΊπŸ‡Έ Nicole': 'af_nicole'
    }
    TTS_ENABLED = True
except Exception as e:
    print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
    TTS_ENABLED = False

def get_web_results(query, max_results=5):  # Increased to 5 for better context
    """Get web search results using DuckDuckGo"""
    try:
        with DDGS() as ddgs:
            results = list(ddgs.text(query, max_results=max_results))
            return [{
                "title": result.get("title", ""),
                "snippet": result["body"],
                "url": result["href"],
                "date": result.get("published", "")
            } for result in results]
    except Exception as e:
        return []

def format_prompt(query, context):
    """Format the prompt with web context"""
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
    return f"""You are an intelligent search assistant. Answer the user's query using the provided web context.
Current Time: {current_time}

Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context.

Query: {query}

Web Context:
{context_lines}

Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc. If the query is about elections, clearly specify which year and type of election you're discussing.
Answer:"""

def format_sources(web_results):
    """Format sources with more details"""
    if not web_results:
        return "<div class='no-sources'>No sources available</div>"
    
    sources_html = "<div class='sources-container'>"
    for i, res in enumerate(web_results, 1):
        title = res["title"] or "Source"
        date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else ""
        sources_html += f"""
        <div class='source-item'>
            <div class='source-number'>[{i}]</div>
            <div class='source-content'>
                <a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
                {date}
                <div class='source-snippet'>{res['snippet'][:150]}...</div>
            </div>
        </div>
        """
    sources_html += "</div>"
    return sources_html

# Wrap the answer generation with spaces.GPU decorator
@spaces.GPU(duration=30)
def generate_answer(prompt):
    """Generate answer using the DeepSeek model"""
    # Initialize model inside the GPU-decorated function
    model = init_models()
    
    inputs = tokenizer(
        prompt, 
        return_tensors="pt", 
        padding=True,
        truncation=True,
        max_length=512,
        return_attention_mask=True
    ).to(model.device)
    
    outputs = model.generate(
        inputs.input_ids,
        attention_mask=inputs.attention_mask,
        max_new_tokens=256,
        temperature=0.7,
        top_p=0.95,
        pad_token_id=tokenizer.eos_token_id,
        do_sample=True,
        early_stopping=True
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Similarly wrap TTS generation with spaces.GPU
@spaces.GPU(duration=60)
def generate_speech_with_gpu(text, voice_name='af'):
    """Generate speech from text using Kokoro TTS model with GPU handling"""
    try:
        # Initialize TTS model and voice inside GPU function
        device = 'cuda'
        TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
        VOICEPACK = torch.load(f'Kokoro-82M/voices/{voice_name}.pt', weights_only=True).to(device)
        
        # Clean the text
        clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
        clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
        
        # Split long text into chunks
        max_chars = 1000
        chunks = []
        
        if len(clean_text) > max_chars:
            sentences = clean_text.split('.')
            current_chunk = ""
            
            for sentence in sentences:
                if len(current_chunk) + len(sentence) < max_chars:
                    current_chunk += sentence + "."
                else:
                    if current_chunk:
                        chunks.append(current_chunk)
                    current_chunk = sentence + "."
            if current_chunk:
                chunks.append(current_chunk)
        else:
            chunks = [clean_text]
        
        # Generate audio for each chunk
        audio_chunks = []
        for chunk in chunks:
            if chunk.strip():  # Only process non-empty chunks
                chunk_audio, _ = generate(TTS_MODEL, chunk.strip(), VOICEPACK, lang='a')
                if isinstance(chunk_audio, torch.Tensor):
                    chunk_audio = chunk_audio.cpu().numpy()
                audio_chunks.append(chunk_audio)
        
        # Concatenate chunks if we have any
        if audio_chunks:
            if len(audio_chunks) > 1:
                final_audio = np.concatenate(audio_chunks)
            else:
                final_audio = audio_chunks[0]
            return (24000, final_audio)
        return None
        
    except Exception as e:
        print(f"Error generating speech: {str(e)}")
        import traceback
        traceback.print_exc()
        return None

def process_query(query, history, selected_voice='af'):
    """Process user query with streaming effect"""
    try:
        if history is None:
            history = []
            
        # Get web results first
        web_results = get_web_results(query)
        sources_html = format_sources(web_results)
        
        current_history = history + [[query, "*Searching...*"]]
        yield {
            answer_output: gr.Markdown("*Searching & Thinking...*"),
            sources_output: gr.HTML(sources_html),
            search_btn: gr.Button("Searching...", interactive=False),
            chat_history_display: current_history,
            audio_output: None
        }
        
        # Generate answer
        prompt = format_prompt(query, web_results)
        answer = generate_answer(prompt)
        final_answer = answer.split("Answer:")[-1].strip()
        
        # Generate speech from the answer
        if TTS_ENABLED:
            try:
                yield {
                    answer_output: gr.Markdown(final_answer),
                    sources_output: gr.HTML(sources_html),
                    search_btn: gr.Button("Generating audio...", interactive=False),
                    chat_history_display: history + [[query, final_answer]],
                    audio_output: None
                }
                
                audio = generate_speech_with_gpu(final_answer, selected_voice)
                if audio is None:
                    print("Failed to generate audio")
            except Exception as e:
                print(f"Error in speech generation: {str(e)}")
                audio = None
        else:
            audio = None
        
        updated_history = history + [[query, final_answer]]
        yield {
            answer_output: gr.Markdown(final_answer),
            sources_output: gr.HTML(sources_html),
            search_btn: gr.Button("Search", interactive=True),
            chat_history_display: updated_history,
            audio_output: audio if audio is not None else gr.Audio(value=None)
        }
    except Exception as e:
        error_message = str(e)
        if "GPU quota" in error_message:
            error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
        
        yield {
            answer_output: gr.Markdown(f"Error: {error_message}"),
            sources_output: gr.HTML(sources_html),
            search_btn: gr.Button("Search", interactive=True),
            chat_history_display: history + [[query, f"*Error: {error_message}*"]],
            audio_output: None
        }

# Update the CSS for better contrast and readability
css = """
.gradio-container {
    max-width: 1200px !important;
    background-color: #f7f7f8 !important;
}

#header {
    text-align: center;
    margin-bottom: 2rem;
    padding: 2rem 0;
    background: #1a1b1e;
    border-radius: 12px;
    color: white;
}

#header h1 {
    color: white;
    font-size: 2.5rem;
    margin-bottom: 0.5rem;
}

#header h3 {
    color: #a8a9ab;
}

.search-container {
    background: #1a1b1e;
    border-radius: 12px;
    box-shadow: 0 4px 12px rgba(0,0,0,0.1);
    padding: 1rem;
    margin-bottom: 1rem;
}

.search-box {
    padding: 1rem;
    background: #2c2d30;
    border-radius: 8px;
    margin-bottom: 1rem;
}

/* Style the input textbox */
.search-box input[type="text"] {
    background: #3a3b3e !important;
    border: 1px solid #4a4b4e !important;
    color: white !important;
    border-radius: 8px !important;
}

.search-box input[type="text"]::placeholder {
    color: #a8a9ab !important;
}

/* Style the search button */
.search-box button {
    background: #2563eb !important;
    border: none !important;
}

/* Results area styling */
.results-container {
    background: #2c2d30;
    border-radius: 8px;
    padding: 1rem;
    margin-top: 1rem;
}

.answer-box {
    background: #3a3b3e;
    border-radius: 8px;
    padding: 1.5rem;
    color: white;
    margin-bottom: 1rem;
}

.answer-box p {
    color: #e5e7eb;
    line-height: 1.6;
}

.sources-container {
    margin-top: 1rem;
    background: #2c2d30;
    border-radius: 8px;
    padding: 1rem;
}

.source-item {
    display: flex;
    padding: 12px;
    margin: 8px 0;
    background: #3a3b3e;
    border-radius: 8px;
    transition: all 0.2s;
}

.source-item:hover {
    background: #4a4b4e;
}

.source-number {
    font-weight: bold;
    margin-right: 12px;
    color: #60a5fa;
}

.source-content {
    flex: 1;
}

.source-title {
    color: #60a5fa;
    font-weight: 500;
    text-decoration: none;
    display: block;
    margin-bottom: 4px;
}

.source-date {
    color: #a8a9ab;
    font-size: 0.9em;
    margin-left: 8px;
}

.source-snippet {
    color: #e5e7eb;
    font-size: 0.9em;
    line-height: 1.4;
}

.chat-history {
    max-height: 400px;
    overflow-y: auto;
    padding: 1rem;
    background: #2c2d30;
    border-radius: 8px;
    margin-top: 1rem;
}

.examples-container {
    background: #2c2d30;
    border-radius: 8px;
    padding: 1rem;
    margin-top: 1rem;
}

.examples-container button {
    background: #3a3b3e !important;
    border: 1px solid #4a4b4e !important;
    color: #e5e7eb !important;
}

/* Markdown content styling */
.markdown-content {
    color: #e5e7eb !important;
}

.markdown-content h1, .markdown-content h2, .markdown-content h3 {
    color: white !important;
}

.markdown-content a {
    color: #60a5fa !important;
}

/* Accordion styling */
.accordion {
    background: #2c2d30 !important;
    border-radius: 8px !important;
    margin-top: 1rem !important;
}

.voice-selector {
    margin-top: 1rem;
    background: #2c2d30;
    border-radius: 8px;
    padding: 0.5rem;
}

.voice-selector select {
    background: #3a3b3e !important;
    color: white !important;
    border: 1px solid #4a4b4e !important;
}
"""

# Update the Gradio interface layout
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
    chat_history = gr.State([])
    
    with gr.Column(elem_id="header"):
        gr.Markdown("# πŸ” AI Search Assistant")
        gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
    
    with gr.Column(elem_classes="search-container"):
        with gr.Row(elem_classes="search-box"):
            search_input = gr.Textbox(
                label="", 
                placeholder="Ask anything...", 
                scale=5,
                container=False
            )
            search_btn = gr.Button("Search", variant="primary", scale=1)
            voice_select = gr.Dropdown(
                choices=list(VOICE_CHOICES.items()),
                value='af',
                label="Select Voice",
                elem_classes="voice-selector"
            )
        
        with gr.Row(elem_classes="results-container"):
            with gr.Column(scale=2):
                with gr.Column(elem_classes="answer-box"):
                    answer_output = gr.Markdown(elem_classes="markdown-content")
                    with gr.Row():
                        audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player")
                with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
                    chat_history_display = gr.Chatbot(elem_classes="chat-history")
            with gr.Column(scale=1):
                with gr.Column(elem_classes="sources-box"):
                    gr.Markdown("### Sources")
                    sources_output = gr.HTML()
        
        with gr.Row(elem_classes="examples-container"):
            gr.Examples(
                examples=[
                    "musk explores blockchain for doge",
                    "nvidia to launch new gaming card",
                    "What are the best practices for sustainable living?",
                    "How is climate change affecting ocean ecosystems?"
                ],
                inputs=search_input,
                label="Try these examples"
            )

    # Handle interactions
    search_btn.click(
        fn=process_query,
        inputs=[search_input, chat_history, voice_select],
        outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
    )
    
    # Also trigger search on Enter key
    search_input.submit(
        fn=process_query,
        inputs=[search_input, chat_history, voice_select],
        outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
    )

if __name__ == "__main__":
    demo.launch(share=True)